CONCEPT	TING K FOR	OVER ALL	REACTION
CONCELL		UVLINALL	

- Recall: many reactions cannot be carried out in ____ step, but instead require ______ steps to get the final product.
 Keq of the overall reaction is the _____ of Keq values of these multiple steps.
 EXAMPLE: Calculate the equilibrium constant for the overall reaction: C (s) + CO₂ (g) = 2 CO (g) Keq = ? given the following partial reactions:
 H₂ (g) + CO₂ (g) = H₂O (g) + CO (g) Keq = 7.65 x 10-1
 2 H₂ (g) + CO₂ (g) = 2 H₂O (g) + C (s) Keq = 2.75 x 10-1
 STEP 1: Start with the first compound in the overall reaction and locate it in the set of partial reactions.
 Compound from partial reaction must match (_____ , ____) with the one from the overall equation.
 - This may require you to reverse, multiply or divide the partial reaction, which will also affect Keq.
 STEP 2: Keep moving onto the next compound in the overall reaction until you locate all compounds in partial reactions.
- - □ skip compound found in multiple reactions
- **STEP 3:** Combine the partial reactions and **cross out** reaction intermediates if present.
 - □ **Reaction Intermediates**: Compounds that look the same, with one as a reactant and the other a product.
- **STEP 4: Multiply** all the **Keg** values to obtain **Keg** of the overall reaction.

CONCEPT: CALCULATING K FOR OVERALL REACTION

PRACTICE: Calculate Kc for: C (s) + $\frac{1}{2}$ O₂ (g) + H₂ (g) \longrightarrow $\frac{1}{2}$ CH₃OH (g) + $\frac{1}{2}$ CO (g) Kc = ?

Given the following reactions:

$$Kp = 2.11 \times 10^{43}$$

CH₃OH (g) + H₂O (g)
$$\longrightarrow$$
 CO₂ (g) + 3 H₂ (g) Kp = 7.17 x 10⁻²

$$Kp = 7.17 \times 10^{-7}$$

$$CO(g) + H_2O(g) \longrightarrow CO_2(g) + H_2(g)$$

$$Kp = 2.00 \times 10^3$$