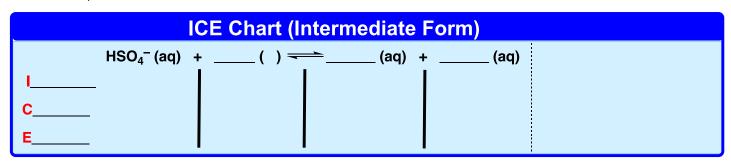
## pH of Sulfuric Acid


- Sulfuric acid represents the only \_\_\_\_\_ diprotic acid.
  - □ In terms of acidity, the 1st acidic proton dissociates \_\_\_\_\_ and the 2nd acidic proton only \_\_\_\_\_.

**EXAMPLE:** Calculate the pH of a 0.0550 M  $H_2SO_4$  solution.  $K_{a1} = 1.0 \times 10^3$  and  $K_{a2} = 1.2 \times 10^{-2}$ .

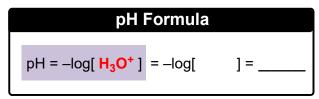
STEP 1: Use the Bronsted-Lowry definition to predict the products formed when H<sub>2</sub>SO<sub>4</sub> reacts with \_\_\_\_\_\_.

□ H<sub>2</sub>SO<sub>4</sub> completely dissociates initially, meaning [H<sub>2</sub>SO<sub>4</sub>] \_\_\_\_\_ [H<sub>3</sub>O<sup>+</sup>] and the Intermediate Form.

STEP 2: Setup an ICE Chart for the Intermediate Form created in STEP 1 and react it with \_\_\_\_\_\_



STEP 3: Using the INITIAL ROW, place the amounts from STEP 1 for the Intermediate Form and [H<sub>3</sub>O<sup>+</sup>].


 $\Box$  Place a <u>0</u> for the basic form.

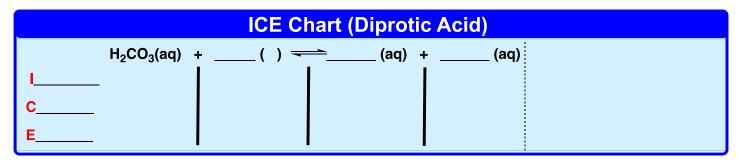
STEP 4: We \_\_\_\_\_ reactants to \_\_\_\_\_ products.

 $\hfill \square$  Using the CHANGE ROW, place a \_\_\_\_\_ for the reactants and a \_\_\_\_\_ for the products.

**STEP 5:** Using the EQUILIBRIUM ROW, setup the equilibrium constant expression with <u>Ka2</u> and solve for \_\_\_\_\_.

**STEP 6:** To solve for pH add the [H<sub>3</sub>O<sup>+</sup>] from STEPS 1 and 5 to determine its \_\_\_\_\_ concentration.




## pH of Weak Diprotic Acids

• Utilize only \_\_\_\_\_ to calculate the pH of the acidic form of a weak diprotic acid.

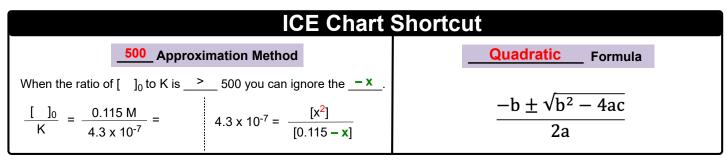
**EXAMPLE:** Calculate the pH of a 0.115 M carbonic acid,  $H_2CO_3$ , solution.  $K_{a1} = 4.3 \times 10^{-7}$  and  $K_{a2} = 5.6 \times 10^{-11}$ .

STEP 1: Setup an ICE Chart for the weak diprotic acid that has it reacting with \_\_\_\_\_\_.

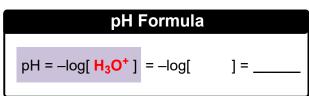
□ Use the Bronsted-Lowry definition to predict the products formed.



STEP 2: Using the INITIAL ROW, place the amount given for the weak diprotic acid.


□ Place a \_\_\_\_ for any substance not given an initial amount.

STEP 3: We \_\_\_\_\_ reactants to \_\_\_\_\_ products.

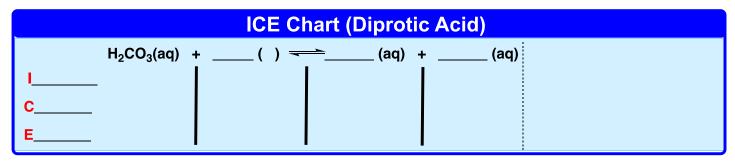

□ Using the CHANGE ROW, place a \_\_\_\_\_ for the reactants and a \_\_\_\_\_ for the products.

STEP 4: Using the EQUILIBRIUM ROW, setup the equilibrium constant expression with \_\_\_\_\_ and solve for \_\_\_\_.

□ Check if a shortcut can be utilized to avoid the \_\_\_\_\_ formula.

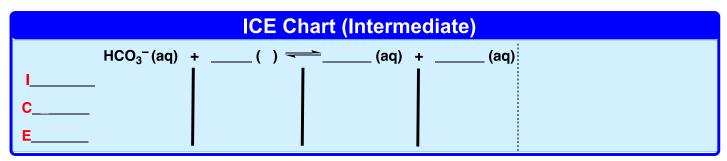


**STEP 5:** The \_\_\_\_\_ variable will equal [ ] and can be used to solve pH.




## **Calculate Concentration of the Basic Form**

• Special Case: When given the initial  $[H_2A]$  the  $[A^2-]$  = the \_\_\_\_\_ value.


**EXAMPLE:** Determine the  $[CO_3^{2-}]$  when given 0.115 M carbonic acid,  $H_2CO_3$ , solution.  $K_{a1} = 4.3 \times 10^{-7}$  and  $K_{a2} = 5.6 \times 10^{-11}$ .

**STEP 1:** Setup an ICE Chart to calculate the [HA-] and [H<sub>3</sub>O+] using \_\_\_\_\_.



STEP 2: Setup another ICE Chart and using the INITIAL ROW, place the calculated amounts for [HA-] and [H<sub>3</sub>O+].

 $\Box$  Place a \_\_\_\_ for the [A<sup>2-</sup>].



STEP 3: We \_\_\_\_\_ reactants to \_\_\_\_\_ products.

 $\hfill \Box$  Using the CHANGE ROW, place a \_\_\_\_\_ for the reactants and a \_\_\_\_\_ for the products.

STEP 4: Using the EQUILIBRIUM ROW, setup the equilibrium constant expression with \_\_\_\_\_ and solve for \_\_\_\_.

□ Check if a shortcut can be utilized to avoid the \_\_\_\_\_ formula.

# 

PRACTICE: Which of the following diprotic acid would produce the most acidic solution when dissolved?

a)  $0.200 \text{ M H}_2\text{SO}_3 \text{ (K}_{a1} = 1.6 \text{ x } 10^{-2} \text{ ; K}_{a2} = 4.6 \text{ x } 10^{-5} \text{)}$ 

b) 0.200 M H<sub>3</sub>PO<sub>4</sub> ( $K_{a1} = 7.5 \times 10^{-3}$ ;  $K_{a2} = 6.2 \times 10^{-8}$ ;  $K_{a3} = 4.2 \times 10^{-13}$ )

c) 0.200 M  $H_2CO_3$  ( $K_{a1} = 4.3 \times 10^{-7}$ ;  $K_{a2} = 5.6 \times 10^{-11}$ )

d) 0.200 M  $H_2S$  ( $K_{a1}$  = 8.9 x  $10^{-8}$  ;  $K_{a2}$  = 1.0 x  $10^{-19}$ )

e)  $0.200 \text{ M HC}_9\text{H}_7\text{O}_4 \text{ (K}_{a1} = 3.3 \text{ x } 10^{-4}\text{)}$ 

**PRACTICE:** Determine the pH of 0.115 M Na<sub>2</sub>S. Hydrosulfuric acid,  $H_2S$ , possesses  $K_{a1} = 1.0 \times 10^{-7}$  and  $K_{a2} = 9.1 \times 10^{-8}$ .