CONCEPT: GAS EVOLUTION EQUATIONS

- A **Gas Evolution Equation** is a molecular equation that involves the creation of specific gases.
 - □ The gases of ______, ____, & _____ are formed once *median products* lose a water molecule.
 - □ **Median Product**: The form a product holds before it fully converts into its final product form.
 - Final Product = Median Product _____.

Gas-Evolution		
Reactant Ions	Median Product	Final Product
OH ⁻ + NH ₄ +		
H+ + HCO ₃ -		
H ⁺ + CO ₃ ²⁻		
H ⁺ + SO ₃ ²⁻		
H+ + S ²⁻		

EXAMPLE: Predict whether a chemical reaction occurs and write the balanced molecular equation.

STEP 1: Break up Reactant 1 and Reactant 2 into their ionic forms.

- STEP 2: Swap Ionic Partners by remembering that opposite charges attract.
 - $\hfill \square$ Apply the rules for combining ions based on the numerical values of their charges.
- **STEP 3:** Identify the *Median Product* or gas that forms from the gas evolution equation.
 - $\hfill\Box$ Except for hydrogen sulfide, break it up into water and gas.
- STEP 4: If necessary, balance your molecular equation by placing the correct coefficients in front of each molecule.

CONCEPT: GAS EVOLUTION EQUATIONS

PRACTICE: Predict the products formed from the following gas evolution equation.

PRACTICE: Predict the products formed from the following gas evolution equation.

PRACTICE: Predict the products formed from the following gas evolution equation.

$$_{\text{____}} \text{K}_2 \text{SO}_3 \text{ (aq)} + _{\text{____}} \text{H}_2 \text{SO}_4 \text{ (aq)} \longrightarrow$$