CONCEPT: SOLUBILITY PRODUCT CONSTANT: Ksp

Solubility Product Constant (Ksp) measures	s of solid ionic compounds in a solv	vent at equilibrium
--	--------------------------------------	---------------------

□ Solubility is the maximum amount of solid ______ in a solvent, usually represented as M (molar solubility).

• Magnitude of **Ksp** value determines _____ of solubility

□ ___ Ksp: ____ soluble the solid; ___ Ksp: ____ soluble the solid

- This comparison can only be used between compounds that break up into the _____ number of ions.

EXAMPLE: Given the following ionic compounds, which will have the highest [OH-] concentration? Hint: which is most soluble in water?

- a) $Fe(OH)_2$ Ksp = 4.87 x 10^{-17}
- b) $Pb(OH)_2$ Ksp = 1.43 x 10⁻²⁰
- c) $Mg(OH)_2$ Ksp = 2.06 x 10⁻¹³
- d) $Sn(OH)_2$ Ksp = 5.45 x 10^{-27}

Ksp Calculations

Solubility is an _____ process; hence calculations will require an ICE chart.

EXAMPLE: PbF₂ is a white solid and has diverse applications in pharmaceuticals, metallurgy, and technology. If the concentration of lead (II) fluoride is 4.2 M with a Ksp = 3.6×10^{-8} , calculate the molar solubility of this solid at 25° C.

STEP 1: Set up an ICE Chart with solid as the only reactant; cross out the _____ side.

STEP 2: Using INITIAL ROW, set products equal to zero.

STEP 3: We lose reactants to make products.

□ Using the **CHANGE ROW**, place a _____ for the products

STEP 4: Using the EQUILIBRIUM ROW, set up the equilibrium constant expression with _____ and solve for ____.

□ variable ____ in the ICE chart represents molar _____ of a solid

CONCEPT: SOLUBILITY PRODUCT CONSTANT: Ksp
PRACTICE: Solubility of Sn(OH) ₂ was found to be 1.11 x 10 ⁻⁹ M; calculate Ksp of this compound.
PRACTICE: If a saturated solution of Ag ₂ CO ₃ contains 2.56 x 10 ⁻⁴ M of Ag ⁺ ions, determine its solubility product constant.
PRACTICE: What is the solubility of CN- ions in a solution of 5.5 M Hg ₂ (CN) ₂ , with a Ksp of 5.0 x 10 ⁻⁴⁰ ?