CONCEPT: SOLUBILITY PRODUCT CONSTANT: Ksp | Solubility Product Constant (Ksp) measures | s of solid ionic compounds in a solv | vent at equilibrium | |--|--------------------------------------|---------------------| |--|--------------------------------------|---------------------| □ Solubility is the maximum amount of solid ______ in a solvent, usually represented as M (molar solubility). • Magnitude of **Ksp** value determines _____ of solubility □ ___ Ksp: ____ soluble the solid; ___ Ksp: ____ soluble the solid - This comparison can only be used between compounds that break up into the _____ number of ions. **EXAMPLE**: Given the following ionic compounds, which will have the highest [OH-] concentration? Hint: which is most soluble in water? - a) $Fe(OH)_2$ Ksp = 4.87 x 10^{-17} - b) $Pb(OH)_2$ Ksp = 1.43 x 10⁻²⁰ - c) $Mg(OH)_2$ Ksp = 2.06 x 10⁻¹³ - d) $Sn(OH)_2$ Ksp = 5.45 x 10^{-27} ## **Ksp Calculations** Solubility is an _____ process; hence calculations will require an ICE chart. **EXAMPLE**: PbF₂ is a white solid and has diverse applications in pharmaceuticals, metallurgy, and technology. If the concentration of lead (II) fluoride is 4.2 M with a Ksp = 3.6×10^{-8} , calculate the molar solubility of this solid at 25° C. STEP 1: Set up an ICE Chart with solid as the only reactant; cross out the _____ side. STEP 2: Using INITIAL ROW, set products equal to zero. STEP 3: We lose reactants to make products. □ Using the **CHANGE ROW**, place a _____ for the products STEP 4: Using the EQUILIBRIUM ROW, set up the equilibrium constant expression with _____ and solve for ____. □ variable ____ in the ICE chart represents molar _____ of a solid | CONCEPT: SOLUBILITY PRODUCT CONSTANT: Ksp | |--| | PRACTICE: Solubility of Sn(OH) ₂ was found to be 1.11 x 10 ⁻⁹ M; calculate Ksp of this compound. | | | | | | | | | | | | PRACTICE: If a saturated solution of Ag ₂ CO ₃ contains 2.56 x 10 ⁻⁴ M of Ag ⁺ ions, determine its solubility product constant. | | | | | | | | | | | | PRACTICE: What is the solubility of CN- ions in a solution of 5.5 M Hg ₂ (CN) ₂ , with a Ksp of 5.0 x 10 ⁻⁴⁰ ? | | | | | | | | | | |