| in 1923, Johannes _ | and Thomas de | eveloped a new definition for acids and bases. | | |---|---|--|-------| | □ Bronsted-Lo | wry Acid: a proton (H+) | | | | - acid | donates H+ to water producing H ₃ O+ ion (hyd | dronium) | | | | HBr (aq) + H_2O (I) \longrightarrow | (aq) + Br ⁻ (aq) | | | | acid
H ⁺ | | | | □ Bronsted-Lc | wry Base: a proton (H+) | | | | | NH_3 (aq) + H_2O (I) \longrightarrow I | NH ₄ + (aq) + (aq) | | | | base | | | | | | | | | EXAMPLE: Identify ϵ | each compound as either Bronsted-Lowry ac | d or base. | | | a) NH ₄ + | c) CH ₃ NH ₂ | | | | b) LiH | d) H ₂ Te | | | | Are ALL Arrhenius a | cids and bases considered Bronsted-Lowry a | | | | Are ALL Arrhenius a | HBr (aq) + H ₂ O (I)
donates H ⁺ produces H | (aq) + Br ⁻ (aq)
 ⁺ = H ₃ O ⁺ | | | Are ALL Arrhenius a | HBr (aq) + H_2O (I) \longrightarrow | (aq) + Br ⁻ (aq)
 ⁺ = H ₃ O ⁺ | | | | HBr (aq) + H ₂ O (I) \longrightarrow donates H ⁺ produces H Na(OH) (aq) + H ₂ O (I) \longrightarrow Na ⁺ | (aq) + Br - (aq)
 | | | Are ALL Bronsted-Lo | HBr (aq) + H ₂ O (I) \longrightarrow donates H ⁺ produces H Na(OH) (aq) + H ₂ O (I) \longrightarrow Na ⁺ accepts H ⁺ | (aq) + Br - (aq)
 + = H ₃ O+
- (aq) + H ₂ O (I) +(aq)
produces OH- | Lowry | | Are ALL Bronsted-Lo | HBr (aq) + H ₂ O (I) → | (aq) + Br - (aq) + = H ₃ O+ - (aq) + H ₂ O (I) + (aq) produces OH- us bases. Bronsted- | | | o Are ALL Bronsted-Lo
□ Bases that o | HBr (aq) + H ₂ O (I) \longrightarrow produces H Na(OH) (aq) + H ₂ O (I) \longrightarrow Na ⁺ accepts H ⁺ Dwry bases considered Arrhenius bases? NH ₃ (aq) + H ₂ O (I) \longrightarrow N does not | | | | o Are ALL Bronsted-Lo
□ Bases that o | HBr (aq) + H ₂ O (I) produces H Na(OH) (aq) + H ₂ O (I) Na ⁺ accepts H ⁺ Dwry bases considered Arrhenius bases? do not contain ion are NOT Arrheniu NH ₃ (aq) + H ₂ O (I) N does not donate OH ⁻ | | | | Are ALL Bronsted-Lo □ Bases that o Are ALL Bronsted-Lo | HBr (aq) + H ₂ O (I) produces H Na(OH) (aq) + H ₂ O (I) Na ⁺ accepts H ⁺ Dwry bases considered Arrhenius bases? do not contain ion are NOT Arrheniu NH ₃ (aq) + H ₂ O (I) N does not donate OH ⁻ | (aq) + Br - (aq) + = H ₃ O+ (aq) + H ₂ O (I) + (aq) produces OH- us bases. H ₄ + (aq) + (aq) produces OH- | | | Are ALL Bronsted-Lo | HBr (aq) + H ₂ O (I) | (aq) + Br - (aq) t = H ₃ O+ (aq) + H ₂ O (I) + (aq) produces OH- Us bases. Bronsted- Arrhe Arrhe id/base, Arrhenius acid/base or both. | | | Are ALL Bronsted-Lo | HBr (aq) + H ₂ O (I) | (aq) + Br - (aq) + = H ₃ O+ (aq) + H ₂ O (I) + (aq) produces OH- us bases. H ₄ + (aq) + (aq) produces OH- id/base, Arrhenius acid/base or both. OH) ₂ | | ## **CONCEPT: BRONSTED-LOWRY ACIDS AND BASES** ## **Conjugate Acid-Base Pairs** - Bronsted-Lowry acids and bases occur in _____ pairs. - □ When base accepts a proton, it transforms into a conjugate _____. $$CH_3NH_2$$ (aq) $\xrightarrow{add H^+}$ _____(aq) □ When acid donates a proton, it transforms into conjugate _____. **EXAMPLE:** Provide formulas of the conjugates for each of the following compounds. - a) NH₂NH₂ - b) HCHO₂ - c) HSO₄- (base) - d) HClO₂ PRACTICE: Identify conjugate acid and conjugate base in the following reaction. $$H_2PO_4^-$$ (aq) + H_2O (I) \longrightarrow HPO_4^{2-} (aq) + H_3O^+ (aq) - a) HPO₄²⁻ (conjugate acid), H₃O⁺ (conjugate base) - b) HPO₄²⁻ (conjugate base), H₃O⁺ (conjugate acid) - c) H₂PO₄- (conjugate acid), H₂O (conjugate base) - d) H₂PO₄- (conjugate base), H₂O (conjugate acid) **PRACTICE:** In the following reaction, label Bronsted-Lowry acid and base, along with conjugate acid and base. $$H_2C_6H_6O_6 \text{ (aq)} + H_2O \text{ (I)} \longrightarrow HC_6H_6O_6^- \text{ (aq)} + H_3O \text{ (aq)}$$ ## **CONCEPT:** BRONSTED-LOWRY ACIDS AND BASES ## **Strength of Conjugate Acids & Bases** | • There is an | relat | ionship between str | ength of acids | & bases and the | eir | | | | |--|---------------------|-----------------------------|---------------------|------------------|------------------------|--|--|--| | □ A strong acid will have a relatively conjugate base. | | | | | | | | | | - S | tronger the acid | = the cor | ijugate base | - weak conjuga | ate base has | affinity for proton | | | | | HCI (aq) H | + H ₂ O (liq) —— | | _ 、 ,, | _ (aq)
conjugate ba | se | | | | □ A weak a | acid will have a re | elatively | conjugat | e base. | | | | | | - W | eaker the acid = | stronger the conjug | gate base - | stronger conjuga | ate base has | affinity for proton | | | | | HCN (aq) H | - H ₂ O (liq) | → – | | (aq)
conjugate | e base | | | | _ | | conjugate ad | | | | readily donates proton
_ donates proton | | | | EXAMPLE: Which of the following acids have relatively strong conjugate bases? | | | | | | | | | | a. HBrO ₄ | b | . HCN | c. HNO ₃ | d | . HClO ₄ | | | | | | | | | | | | | | **PRACTICE:** Which of the following is the strongest base? a. NO_{3}^{-} b. F- c. Cl- d. ClO₄- e. H₂O **PRACTICE:** Which of the following bases will have the weakest conjugate acid? a. CH₃COOH b. HCl c. CH₃NH₂ d. (CH₃)₂NH e. LiOH