in 1923, Johannes _	and Thomas de	eveloped a new definition for acids and bases.	
□ Bronsted-Lo	wry Acid: a proton (H+)		
- acid	donates H+ to water producing H ₃ O+ ion (hyd	dronium)	
	HBr (aq) + H_2O (I) \longrightarrow	(aq) + Br ⁻ (aq)	
	acid H ⁺		
□ Bronsted-Lc	wry Base: a proton (H+)		
	NH_3 (aq) + H_2O (I) \longrightarrow I	NH ₄ + (aq) + (aq)	
	base		
EXAMPLE: Identify ϵ	each compound as either Bronsted-Lowry ac	d or base.	
a) NH ₄ +	c) CH ₃ NH ₂		
b) LiH	d) H ₂ Te		
Are ALL Arrhenius a	cids and bases considered Bronsted-Lowry a		
Are ALL Arrhenius a	HBr (aq) + H ₂ O (I) donates H ⁺ produces H	(aq) + Br ⁻ (aq) ⁺ = H ₃ O ⁺	
Are ALL Arrhenius a	HBr (aq) + H_2O (I) \longrightarrow	(aq) + Br ⁻ (aq) ⁺ = H ₃ O ⁺	
	HBr (aq) + H ₂ O (I) \longrightarrow donates H ⁺ produces H Na(OH) (aq) + H ₂ O (I) \longrightarrow Na ⁺	(aq) + Br - (aq) 	
Are ALL Bronsted-Lo	HBr (aq) + H ₂ O (I) \longrightarrow donates H ⁺ produces H Na(OH) (aq) + H ₂ O (I) \longrightarrow Na ⁺ accepts H ⁺	(aq) + Br - (aq) + = H ₃ O+ - (aq) + H ₂ O (I) +(aq) produces OH-	Lowry
Are ALL Bronsted-Lo	HBr (aq) + H ₂ O (I) →	(aq) + Br - (aq) + = H ₃ O+ - (aq) + H ₂ O (I) + (aq) produces OH- us bases. Bronsted-	
o Are ALL Bronsted-Lo □ Bases that o	HBr (aq) + H ₂ O (I) \longrightarrow produces H Na(OH) (aq) + H ₂ O (I) \longrightarrow Na ⁺ accepts H ⁺ Dwry bases considered Arrhenius bases? NH ₃ (aq) + H ₂ O (I) \longrightarrow N does not		
o Are ALL Bronsted-Lo □ Bases that o	HBr (aq) + H ₂ O (I) produces H Na(OH) (aq) + H ₂ O (I) Na ⁺ accepts H ⁺ Dwry bases considered Arrhenius bases? do not contain ion are NOT Arrheniu NH ₃ (aq) + H ₂ O (I) N does not donate OH ⁻		
Are ALL Bronsted-Lo □ Bases that o Are ALL Bronsted-Lo	HBr (aq) + H ₂ O (I) produces H Na(OH) (aq) + H ₂ O (I) Na ⁺ accepts H ⁺ Dwry bases considered Arrhenius bases? do not contain ion are NOT Arrheniu NH ₃ (aq) + H ₂ O (I) N does not donate OH ⁻	(aq) + Br - (aq) + = H ₃ O+ (aq) + H ₂ O (I) + (aq) produces OH- us bases. H ₄ + (aq) + (aq) produces OH-	
Are ALL Bronsted-Lo	HBr (aq) + H ₂ O (I)	(aq) + Br - (aq) t = H ₃ O+ (aq) + H ₂ O (I) + (aq) produces OH- Us bases. Bronsted- Arrhe Arrhe id/base, Arrhenius acid/base or both.	
Are ALL Bronsted-Lo	HBr (aq) + H ₂ O (I)	(aq) + Br - (aq) + = H ₃ O+ (aq) + H ₂ O (I) + (aq) produces OH- us bases. H ₄ + (aq) + (aq) produces OH- id/base, Arrhenius acid/base or both. OH) ₂	

CONCEPT: BRONSTED-LOWRY ACIDS AND BASES

Conjugate Acid-Base Pairs

- Bronsted-Lowry acids and bases occur in _____ pairs.
 - □ When base accepts a proton, it transforms into a conjugate _____.

$$CH_3NH_2$$
 (aq) $\xrightarrow{add H^+}$ _____(aq)

□ When acid donates a proton, it transforms into conjugate _____.

EXAMPLE: Provide formulas of the conjugates for each of the following compounds.

- a) NH₂NH₂
- b) HCHO₂
- c) HSO₄- (base)
- d) HClO₂

PRACTICE: Identify conjugate acid and conjugate base in the following reaction.

$$H_2PO_4^-$$
 (aq) + H_2O (I) \longrightarrow HPO_4^{2-} (aq) + H_3O^+ (aq)

- a) HPO₄²⁻ (conjugate acid), H₃O⁺ (conjugate base)
- b) HPO₄²⁻ (conjugate base), H₃O⁺ (conjugate acid)
- c) H₂PO₄- (conjugate acid), H₂O (conjugate base)
- d) H₂PO₄- (conjugate base), H₂O (conjugate acid)

PRACTICE: In the following reaction, label Bronsted-Lowry acid and base, along with conjugate acid and base.

$$H_2C_6H_6O_6 \text{ (aq)} + H_2O \text{ (I)} \longrightarrow HC_6H_6O_6^- \text{ (aq)} + H_3O \text{ (aq)}$$

CONCEPT: BRONSTED-LOWRY ACIDS AND BASES

Strength of Conjugate Acids & Bases

• There is an	relat	ionship between str	ength of acids	& bases and the	eir			
□ A strong acid will have a relatively conjugate base.								
- S	tronger the acid	= the cor	ijugate base	- weak conjuga	ate base has	affinity for proton		
	HCI (aq) H	+ H ₂ O (liq) ——		_ 、 ,,	_ (aq) conjugate ba	se		
□ A weak a	acid will have a re	elatively	conjugat	e base.				
- W	eaker the acid =	stronger the conjug	gate base -	stronger conjuga	ate base has	affinity for proton		
	HCN (aq) H	- H ₂ O (liq)	→ –		(aq) conjugate	e base		
_		conjugate ad				readily donates proton _ donates proton		
EXAMPLE: Which of the following acids have relatively strong conjugate bases?								
a. HBrO ₄	b	. HCN	c. HNO ₃	d	. HClO ₄			

PRACTICE: Which of the following is the strongest base?

a. NO_{3}^{-}

b. F-

c. Cl-

d. ClO₄-

e. H₂O

PRACTICE: Which of the following bases will have the weakest conjugate acid?

a. CH₃COOH

b. HCl

c. CH₃NH₂

d. (CH₃)₂NH

e. LiOH