CONCEPT: INTRO TO HENRY'S LAW

• The solubility of a dissolved gas is _____ proportional to the partial pressure of that gas over the liquid.

Henry's Law	
Pressure–Solubility Relationship	Temperature–Solubility Relationship
As the Pressure the solubility of a gas	As the Temperature the solubility of a gas
☐ Changes in Pressure have effect on solids or liquids.	☐ As the Temperature the solubility of solids
Pressure	

EXAMPLE: In general, as the temperature increases, the solubility of a gas in a given liquid ______, and the solubility of most solids in a given liquid _____.

- a) Increases, increases
- b) Decreases, increases
- c) Increases, decreases
- d) Decreases, decreases

PRACTICE: Which of the following is true for the solubility of KBr (s) and CH₃(CH₂)₃CH₃ (g) in water?

- a) Decreasing the temperature will decrease the solubility of CH₃(CH₂)₃CH₃.
- b) Increasing the pressure will decrease the solubility of KBr.
- c) Both KBr and CH₃(CH₂)₃CH₃ are completely soluble in water.
- d) Both are insoluble in water.
- e) None of the above.