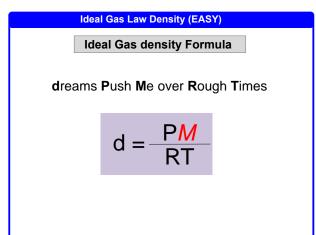
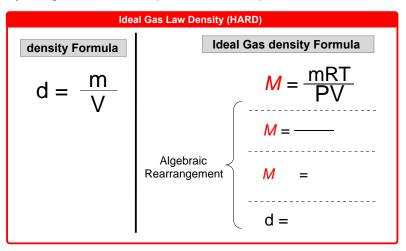
CONCEPT: THE IDEAL GAS LAW: DENSITY

Density


• Recall, density represents the amount of _____ per unit of _____.


Density Formula	
$d = \frac{m}{V}$	 □ d = density of the gas in □ m = Mass of the gas in _grams □ V = Volume of the gas in

EXAMPLE: An unknown gas sample has a density of 1.70 g/L. If the sample has a volume 120.0 mL, what is its mass in grams?

Ideal Gas Law Derivation

• The Ideal Gas Law can be used to determine the density of a gas under certain pressure and temperature conditions.

EXAMPLE: A gaseous compound of nitrogen and hydrogen is found to have a density of 0.977 g/L at 0.69474 atm and 373.15 K. What is the molecular formula of the compound?

a) N_2H_4

b) NH₃

c) HN₃

d) HN

e) N₄H₈

CONCEPT: THE IDEAL GAS LAW: DENSITY PRACTICE: Consider two containers of gases at the same temperature. One has helium at a pressure of 1.00 atm. The other contains carbon dioxide with the same density as the helium gas. What is the pressure of the carbon dioxide gas sample?
PRACTICE: Determine the molecular formula of a gaseous compound that is 49.48% carbon, 5.19% hydrogen, 28.85% nitrogen, and 16.48% oxygen. At 27°C, the density of the gas is 1.5535 g/L and it exerts a pressure of 0.0985 atm.