
CONCEPT: CRYSTAL FIELD THEORY SUMMARY

- Splitting patterns for d orbitals in complexes depend upon their ______.
 - □ Orbitals with the _____ interactions with ligands have the greatest increase in energy.

• Δ tetrahedral < Δ octahedral < Δ square planar

EXAMPLE: Which one of the following complexes has the smallest crystal field splitting energy?

- a) [Cr(en)₃]³⁺
- b) [CuF₄]³⁻
- c) $[Co(H_2O)_6]^{3+}$
- d) $[Pt(NH_3)_2Cl_2]$

PRACTICE: What is the correct order when the following complexes are arranged in ascending order of the Δ values?

- i) [Mn(NO₂)₆]⁴⁻
- ii) [Ni(CN)₄]²⁻
- iii) [Zn(OH)₄]²⁻

- a) i < ii < iii
- b) ii < i < iii
- c) ii < iii < i
- d) iii < i < ii