CONCEPT: NEUTRON-TO-PROTON RATIO

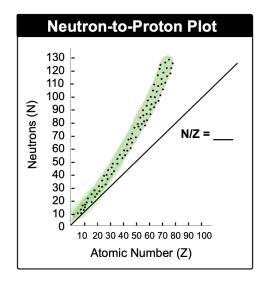
- Determining the ratio of neutrons to protons (_____) is a major method for determining nuclear stability.
 - □ The _____ an isotope is to its ratio then the _____ stable its nucleus.

Nuclear Stability	
Atomic Number (Z)	Neutron-Proton Ratio
Z: 20	1.00
Z: to	1.25
Z: to	1.52

- □ Above Z = _____ stable nuclei exist momentarily and are prone to radioactive decay or emission reactions.
 - _______-209 (Z = 83) is the heaviest element with stable nonradioactive isotopes.

EXAMPLE: Based on their N/Z ratio, which isotope possesses the most stable nucleus?

a) ³H


b) ¹⁰Be

c) ¹⁴C

d) ⁴¹Ca

Neutron to Proton Plot

- A graphical representation of nucleons that depicts a stability line and the _____ (Valley) of Stability.
 - □ **Nucleons:** the subatomic particles confined within the _____ of an atom. (_____ + ____)
 - □ **Stability Line:** the straight line where the number of _____ = the number of _____.
 - □ Band (Valley) of Stability: the curved plot of different _____ isotopes based on their N/Z ratio.

EXAMPLE: Which of the following isotopes will lie to the left of the neutron-to-proton curve?

- a) Zirconium-90
- b) Thorium-230
- c) Palladium-110
- d) Mercury-200