CONCEPT: EFFUSION - Gases consist of a collection of molecules or atoms that are in constant linear motion. - □ **Mean Free Path:** The average distance traveled by gas molecules between collisions. - □ **Effusion:** The escape of gas molecules or atoms through a pinhole. - □ **Diffusion:** The motion of a gas mixture from a _____ to ____ concentration. ## Rate of Effusion - States that the rate of a gas is _____ proportional to the square root of their mass. - □ In simple terms, <u>↑</u> the molar mass of a gas then the _____ its speed and the _____ its rate. **EXAMPLE:** Rank the following in order of increasing rate of effusion: O_2 PF_5 CO_2 Xe ## **Graham's Law of Effusion** - Used when comparing the rate of two different non-reacting gases. - ☐ The effusion rate of a gas and its **time** to travel are _____ proportional. - □ The effusion rate of a gas and its **molar mass** are _____ proportional. | Graham's Law | | | | | |---------------------|--------|-----------------------|--|--| | Rate _{Gas} | time | _ <u>√M</u> | | | | Rate _{Gas} | - time | $=\frac{1}{\sqrt{M}}$ | | | **EXAMPLE:** Calculate the ratio of the effusion rates of helium to methane (CH₄). | PRACTICE: If H ₂ has an effusion rate that is 3.72 times faster than a gas, what is the identity of the unknown gas? | | | | | | | |---|--------------------|----------------------------------|-------------------|-------------------|--|--| | a) Cl ₂ | b) CO ₂ | c) N ₂ O ₄ | d) N ₂ | e) O ₂ | PRACTICE: How many times faster will H ₂ gas pass through a pinhole into an area of vacuum than O ₂ gas? | | | | | | | | a) 32 | b) 2 | c) 2.5 | d) 4 | e) 8 | PRACTICE: It takes 6.3 minutes for 2.3 L argon to effuse through a semipermeable membrane. How long would it take for | | | | | | | | 2.3 L of chlorine gas to effuse under similar conditions? | **CONCEPT: EFFUSION**