CONCEPT: PERIODIC TREND: SUCCESSIVE IONIZATION ENERGIES

• The First Ionization Energy (IE₁) is the energy absorbed to remove the first electron from a gaseous atom.

- □ With more energy you can remove additional electrons in *successive ionizations* giving ______, and on.
- □ **Successive ionizations**: Removing additional electrons in stages instead of all at once.
 - The second and third ionizations of nitrogen are:

EXAMPLE: Provide the fourth ionization energy equation for a manganese atom.

Successive Ionization Energies

- An ever-increasing amount of energy is required each time an electron is removed.
 - □ Traditionally, elements lose valence electrons to become isoelectronic to the noble gases.
 - □ A large **jump** in ionization energy results when we begin to remove the **inner core electrons**.

Successive Ionization Energies								
Element	Configuration	IE ₁	IE ₂	IE ₃	IE ₄	IE ₅	IE ₆	IE ₇
Li	1s ² 2s ¹	520.2	7298	11815				
Ве	1s ² 2s ²	899.5	1757	14848	21007			
В	1s ² 2s ² 2p ¹	800.6	2427	3660	25026	32827		
С	1s ² 2s ² 2p ²	1087	2353	4621	6223	37831	47277	
N	1s ² 2s ² 2p ³	1402	2856	4578	7475	9445	53267	64360
0	1s ² 2s ² 2p ⁴	1314	3388	5301	7469	10990	13327	71330
F	1s ² 2s ² 2p ⁵	1681	3374	6050	8408	11023	15164	17868
Ne	1s ² 2s ² 2p ⁶	2081	3952	6122	9371	12177	15238	19999

EXAMPLE: Of the following atoms, which has the smallest increase for its **second** ionization energy?

a) Al

b) Li

c) Rb

d) Mg

e) Be

CONCEPT: PERIODIC TREND: SUCCESSIVE IONIZATION ENERGIES

PRACTICE: Which of the following represents the third ionization of Mn?

- a) $Mn^{-}(g) + e^{-} \longrightarrow 2 Mn^{2-}(g)$
- c) $Mn^{2-} + e^{-} \longrightarrow Mn^{3-}(g)$
- d) Mn (g) \longrightarrow Mn³⁺ (g) + 3 e⁻

PRACTICE: Of the following atoms, which has the largest third ionization energy?

a) Al

- b) Ca
- c) K

- d) Ba
- e) Cs

PRACTICE: The successive ionization energies for an unknown element are:

- $IE_1 = 896 \text{ kJ/mol}$
- $IE_2 = 1752 \text{ kJ/mol}$
- $IE_3 = 14,807 \text{ kJ/mol}$
- IE₄ = 17,948 kJ/mol

To which family in the periodic table does the unknown element most likely belong?

a) 1A

b) 2A

- c) 3A
- d) 4A
- e) 5A