CONCEPT: ISOMERISM IN COORDINATION COMPLEXES

• **Recall:** Isomers are molecules with the _____ molecular formula, but different connectivity or spatial orientation.

Structural Isomers

- Consist of (1) Coordination Isomers, or (2) Linkage Isomers.
 - 1) Coordination Isomers: molecules where anionic _____ and ____ have switched places.
 - 2) Linkage Isomers: molecules where the connectivity between the _____ and the ____ is different.

EXAMPLE: Draw one coordination isomer and one linkage isomer of the following complex:

$$\begin{bmatrix}
H_3N_{M_1} & H_3N_{M_2} & H_3N_{M_3} \\
H_3N_{M_3} & H_3N_{M_3}
\end{bmatrix}^+_{Br}$$

CONCEPT: ISOMERISM IN COORDINATION COMPLEXES

Geometric Isomers

- Ligand has different spatial orientation around the metal.
 - □ Occurs in complexes of formula _____ or ____
 - *cis* = ligand pair on _____ side
- *trans* = ligand pair on _____ sides

EXAMPLE: Identify the following pairs of complexes as coordination, linkage, or geometric isomers.

$$\begin{bmatrix}
H_2O_{1111}, & O_{1111} &$$

CONCEPT: ISOMERISM IN COORDINATION COMPLEXES

PRACTICE: Which of the following complexes cannot have geometric isomers?

- i) $[PtCl_2(NH_3)_2]$
- ii) $K_4[Fe(CN)_4(OH)_2]$
- iii) [Ag(NH₃)₂]Cl
- iv) $[Ni(H_2O)_2(NH_3)_2]Br_2$

PRACTICE: The complex [Fe(NH₃)₅OCN]²⁺ has two isomers. Draw their structures.

PRACTICE: How many isomers are possible for [Cu(H₂O)₂(NH₃)₂]SO₄? Draw their structures.