CONCEPT: HENDERSON-HASSELBALCH EQUATION

Henderson-Hasselbalch Equation

- Allows us to calculate the _____ of a buffer without having to use an _____ Chart.
 - □ Only applies to buffers composed of _____ acid-base pairs.

Henderson-Hasselbalch Equation
$$pH = pK_{-} + log \frac{[CB]}{[-]}$$

$$pH = pK_{-} + log \frac{[CA]}{[-]}$$

$$[-] = __ or ____$$

EXAMPLE: Calculate the pH of a solution containing 2.0 M nitrous acid (HNO₂) and 1.48 M lithium nitrite (LiNO₂).

 $K_a = 4.6 \times 10^{-4}$.

PRACTICE: The K_b of $C_6H_5NH_2$ (aniline) is 3.9×10^{-10} . Determine pH of a buffer solution made up of 500 mL of 1.4 M $C_6H_5NH_2$ and 230 mL of 2.3 M $C_6H_5NH_3^+$.

CONCEPT: HENDERSON-HASSELBALCH EQUATION
PRACTICE: Determine the buffer component concentration ratio (CB/WA) for a buffer with a pH of 4.7. Ka of boric acid
(H_3BO_3) is 5.4 x 10^{-10} .
PRACTICE: Calculate mass of NaN ₃ that needs be added to 1.8 L of 0.35 M HN ₃ in order to make a buffer with a pH of 6.5.
Ka of hydrazoic acid is 1.9×10^{-5} .
The of Hydrazolo dold to 1.6 x 10 .

CONCEPT: HENDERSON-HASSELBALCH EQUATION

Calculating Buffer Range

- Buffers are _____ at a specific pH range: pH = pKa +/- ___
- Recall that a buffer is _____ when [WA] = [CB] or [WB] = [CA].

☐ This is because of the buffer will equal to of the WA, and will resist pH change the best.

$$pH = pKa + log \frac{[0.40]}{[0.40]} \longrightarrow pH = pKa + \underline{\hspace{1cm}} pH = \underline{\hspace{1cm}}$$

EXAMPLE: Determine the buffering range of a solution containing lactic acid (K_a = 1.4 x 10⁻⁴) and sodium lactate.

PRACTICE: Which of the following weak acid-conjugate base combinations would result in an ideal buffer solution with a pH of 9.4?

- a) formic acid (HCHO₂) and sodium formate $(K_a = 1.8 \times 10^{-4})$
- b) benzoic acid ($HC_7H_5O_2$) and potassium benzoate ($K_a = 6.5 \times 10^{-5}$)
- c) hydrocyanic acid (HCN) and lithium cyanide $(K_a = 4.9 \times 10^{-10})$
- d) iodic acid (HIO₃) and sodium iodate $(K_a = 1.7 \times 10^{-1})$