## **CONCEPT:** Ka AND Kb

- Ka and Kb are equilibrium \_\_\_\_\_ for acids and bases, respectively.
  - Ka and Kb are used to measure the \_\_\_\_\_ of weak acids and bases

| Equilibrium<br>Constant (K)                 | Example Equilibrium Expressions                                                                                                                                                                     | Acid-Base Strength                                                                        |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Ka: acid dissociation (ionization) constant | HF (aq) + H <sub>2</sub> O (I) $\Longrightarrow$ F <sup>-</sup> (aq) + H <sub>3</sub> O <sup>+</sup> (aq) $K_a = \frac{\text{products}}{\text{reactants}} = \frac{1}{10^{-4}} = 6.3 \times 10^{-4}$ | <ul> <li>Stronger Acid: Ka</li> <li>Weak Acid: Ka 1</li> <li>Strong Acid: Ka 1</li> </ul> |
| Kb: base dissociation (ionization) constant | NH <sub>3</sub> (aq) + H <sub>2</sub> O (I) $\longrightarrow$ NH <sub>4</sub> <sup>+</sup> (aq) + OH <sup>-</sup> (aq) $K_b = \frac{\text{products}}{\text{reactants}} =$                           | <ul> <li>Stronger Base: Kb</li> <li>Weak Base: Kb 1</li> <li>Strong Base: Kb 1</li> </ul> |

- \_\_\_\_\_ acids and bases have a dissociation constant associated with them as well

**EXAMPLE:** Identify the strongest acid from the following list of weak acids based on their K<sub>a</sub> values. Assume temp is 25°C.

a) HCN 
$$K_a = 4.9 \times 10^{-10}$$

b) 
$$H_2O$$
  $K_a = 1.0 \times 10^{-14}$ 

b) 
$$H_2O$$
  $K_a = 1.0 \times 10^{-14}$  c)  $HNO_2$   $K_a = 4.6 \times 10^{-4}$ 

d) 
$$HC_3H_5O_3$$
  $K_a = 1.4 \times 10^{-4}$ 

**PRACTICE:** Hypobromous acid ( $K_a = 2.8 \times 10^{-9}$ ) and hydrocyanic acid ( $K_a = 4.9 \times 10^{-10}$ ) are both weak acids. Determine if reactants or products are favored in the following reaction.

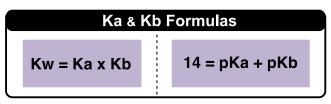
$$HBrO (aq) + CN (aq) \longrightarrow BrO (aq) + HCN (aq)$$

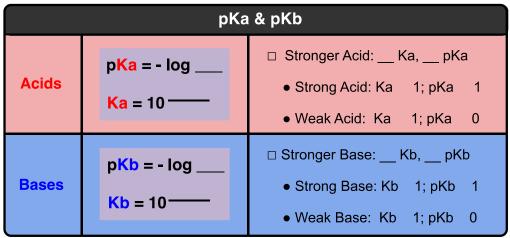
- a) reactants
- b) products
- c) both directions are favored equally
- d) neither direction is favored

**PRACTICE:** Identify a Bronsted-Lowry acid with **weakest** conjugate base.

a) 
$$H_3BO_3$$
  $K_a = 5.4 \times 10^{-10}$ 

b) HF 
$$K_a = 3.5 \times 10^{-4}$$


c) 
$$HNO_2 K_a = 4.6 \times 10^{-4}$$


d) HCIO 
$$K_a = 2.9 \times 10^{-8}$$

## **CONCEPT:** Ka AND Kb

## Ka & Kb Relationship

Ka and Kb are related through the following formulas and can only be used for \_\_\_\_\_\_ pairs





**EXAMPLE:** Aspirin, also known as acetylsalicylic acid (Ka = 3.3 x 10<sup>-4</sup>), is a medication used to reduce pain, fever, and inflammation. Calculate the Kb of acetylsalicylate (C<sub>9</sub>H<sub>7</sub>O<sub>4</sub>-).

**PRACTICE:** Identify which of the compounds is the strongest species.

- a) lodic acid pKa = 0.80
- b) Acetic acid pKb = 9.24
- c) Formic acid pKa = 3.75
- d) Ammonium pKb = 4.75

**PRACTICE:** Determine the pKa given the Kb of the following bases:

- i) NH<sub>3</sub>
- $K_b = 1.76 \times 10^{-5}$ ;  $NH_4$ +
- pK<sub>a</sub> = \_\_\_\_\_

- ii) C<sub>6</sub>H<sub>5</sub>NH<sub>2</sub>

- $K_b = 3.9 \times 10^{-10}$ ;  $C_6H_5NH_3^+$  pK<sub>a</sub> = \_\_\_\_\_\_