CONCEPT: SOLUTIONS: S	SOLUBILTY AND INTERM	OLECULAR FORCES
------------------------------	----------------------	-----------------

Recall, solubility is a	property that deals with the ability of a solute to become dissolved (miscible) in a solvent.
□ Solution: A	mixture that is created when a solvent dissolves a solute.
- A	mixture is created when a solvent cannot dissolve a solute.

EXAMPLE: The following table represents the solubilities of a few nonpolar gases in water at 25 °C under a total pressure of 1.0 atm. Based on the information provided what is the most likely solubility value of F₂?

Solubility in Water					
Compound	N_2	O_2	F ₂		
Solubility (mM)	0.6	1.2	?		

a) 0.01 b) 0.25 c) 1.3 d) 4.2

Theory of Likes Dissolve Likes

• Compounds with the same _____ and/or ____ will dissolve into each other to form a solution.

Types of Intermolecular Forces				
Type of Force	Major Force Of	Polarity		
Ion-Dipole	compounds			
Hydrogen Bonding	Compounds containing directly bonded to F, O or N			
Dipole-Dipole	covalent compounds			
London Dispersion (van der Waals)	covalent compounds			

EXAMPLE: Identify the intermolecular forces present in both the solute and solvent, and predict whether a solution will form between the two: 50 g AsCl₅ placed into 250 g H₂O.

CONCEPT: SOLUTIONS: SOLUBILTY AND INTERMOLECULAR FORCES

PRACTICE: Indicate the most important type of intermolecular attraction responsible for solvation in the following solution:

Methanol, CH₃OH, dissolved in ethanol, CH₃CH₂OH

a) Ion-Dipole

b) Dipole-Dipole

c) Hydrogen Bonding

d) Dispersion Forces

e) Ionic Bonding

PRACTICE: Which of the following solutes will most readily dissolve in H₂O?

a) HOCH₂CH₂CH₂OH

b) CH₃CH₂CH₂CH₃

c) CH₃CH₂CH₂OH

d) CCl₄

e) HOCH₂CH₂OH

PRACTICE: Two pure chemical substance are likely to mix and form a solution if:

- a) The formation of the solution causes an increase in energy.
- b) One substance is polar and the other is nonpolar.
- c) The formation of the solution causes an increase in randomness.
- d) Strong intermolecular attraction between the solute molecules.

PRACTICE: Which of the following statements is/are true?

- I. The hydrocarbon methane (CH₄) will dissolve completely in acetone (CH₃COCH₃).
- II. Ammonia (NH₃) will form a heterogeneous mixture with carbon tetrachloride (CCl₄).
- III. Pentane (C_5H_{12}) will form a homogeneous mixture with carbon tetrabromide (CBr₄).
- IV. Methanethiol (CH₃SH) is miscible in fluoromethane (CH₃F).
- a) I only
- b) II and III
- c) II, III, IV
- d) III and IV
- e) None of the above