| CONCEPT: SOLUTIONS: S | SOLUBILTY AND INTERM | OLECULAR FORCES | |------------------------------|----------------------|-----------------| |------------------------------|----------------------|-----------------| | Recall, solubility is a | property that deals with the ability of a solute to become dissolved (miscible) in a solvent. | |---|---| | □ Solution: A | mixture that is created when a solvent dissolves a solute. | | - A | mixture is created when a solvent cannot dissolve a solute. | **EXAMPLE:** The following table represents the solubilities of a few nonpolar gases in water at 25 °C under a total pressure of 1.0 atm. Based on the information provided what is the most likely solubility value of F₂? | Solubility in Water | | | | | | |---------------------|-------|-------|----------------|--|--| | Compound | N_2 | O_2 | F ₂ | | | | Solubility (mM) | 0.6 | 1.2 | ? | | | a) 0.01 b) 0.25 c) 1.3 d) 4.2 ## **Theory of Likes Dissolve Likes** • Compounds with the same _____ and/or ____ will dissolve into each other to form a solution. | Types of Intermolecular Forces | | | | | |--------------------------------------|---|----------|--|--| | Type of Force | Major Force Of | Polarity | | | | Ion-Dipole | compounds | | | | | Hydrogen Bonding | Compounds containing directly bonded to F, O or N | | | | | Dipole-Dipole | covalent compounds | | | | | London Dispersion
(van der Waals) | covalent compounds | | | | **EXAMPLE:** Identify the intermolecular forces present in both the solute and solvent, and predict whether a solution will form between the two: 50 g AsCl₅ placed into 250 g H₂O. ## **CONCEPT:** SOLUTIONS: SOLUBILTY AND INTERMOLECULAR FORCES **PRACTICE:** Indicate the most important type of intermolecular attraction responsible for solvation in the following solution: ## Methanol, CH₃OH, dissolved in ethanol, CH₃CH₂OH a) Ion-Dipole b) Dipole-Dipole c) Hydrogen Bonding d) Dispersion Forces e) Ionic Bonding **PRACTICE:** Which of the following solutes will most readily dissolve in H₂O? a) HOCH₂CH₂CH₂OH b) CH₃CH₂CH₂CH₃ c) CH₃CH₂CH₂OH d) CCl₄ e) HOCH₂CH₂OH **PRACTICE:** Two pure chemical substance are likely to mix and form a solution if: - a) The formation of the solution causes an increase in energy. - b) One substance is polar and the other is nonpolar. - c) The formation of the solution causes an increase in randomness. - d) Strong intermolecular attraction between the solute molecules. **PRACTICE:** Which of the following statements is/are true? - I. The hydrocarbon methane (CH₄) will dissolve completely in acetone (CH₃COCH₃). - II. Ammonia (NH₃) will form a heterogeneous mixture with carbon tetrachloride (CCl₄). - III. Pentane (C_5H_{12}) will form a homogeneous mixture with carbon tetrabromide (CBr₄). - IV. Methanethiol (CH₃SH) is miscible in fluoromethane (CH₃F). - a) I only - b) II and III - c) II, III, IV - d) III and IV - e) None of the above