CONCEPT: STOICHIOMETRIC RATE CALCULATIONS

• When the rate of one compound is known, the rate of another can be calculated using _____ comparison.

EXAMPLE: If the rate of decomposition of H_2 is 1.54 M/min at a particular time, what would be the rate of formation of N_2 at that same time.

$$2 \text{ NO (g)} + 2 \text{ H}_2 \text{ (g)} \longrightarrow \text{N}_2 \text{ (g)} + 2 \text{ H}_2 \text{O (g)}$$

- STEP 1: If rate of change for one compound is not given, then first calculate it using information provided.
- STEP 2: Using the rate of one compound, perform a rate to rate comparison using stoichiometric coefficients.
 - □ Similar to mole to mole comparison used in stoichiometry.

PRACTICE: The formation of alumina, Al₂O₃, can be illustrated by the reaction below:

4 Al (s) + 3
$$O_2$$
 (g) \longrightarrow 2 Al₂O₃ (s)

At 750 K it takes 267 seconds for the initial concentration of Al_2O_3 to increase from 6.18 x 10^{-5} M to 5.11 x 10^{-4} M. What is the average rate of Al?

- a) $8.41 \times 10^{-7} \text{ M/s}$
- b) 1.68 x 10⁻⁶ M/s
- c) 3.36 x 10⁻⁶ M/s
- d) 4.21 x 10⁻⁷ M/s