CONCEPT: EQUILIBRIUM CONSTANT CALCULATIONS

When _____ equilibrium concentrations of a reaction are known, ____ can be calculated.
K can also be used to calculate ____ missing equilibrium concentration.

EXAMPLE: What is the value of the equilibrium constant (Kc) for the reaction below if the equilibrium mixture contains 0.255 M of CH₄, 1.10 M CO₂, 0.388 M CO and 0.250 M H₂.

$$CH_4(g) + CO_2(g) \implies 2 CO(g) + 2 H_2(g)$$

PRACTICE: The reaction: 2 NO (g) + Br₂ (g) \rightleftharpoons 2 NOBr (g), has a Kp of 2.5 x 10² at 35°C. Calculate the equilibrium concentration of NOBr, if equilibrium concentrations of NO and Br₂ are 0.2 atm and 0.050 atm, respectively.

CONCEPT: EQUILIBRIUM CONSTANT CALCULATIONS

PRACTICE: For the reaction below, Kc = 1.5 at a constant temperature. A 3.2 L flask contains an equilibrium mixture of 3 compounds: 3.7 g of NH₄HS, 70. g of NH₃ and unknown amount of H₂S. What is the mass (grams) of H₂S produced at equilibrium?

$$NH_4HS$$
 (s) \longrightarrow NH_3 (g) + H_2S (g)