
CONCEPT: pH OF STRONG ACIDS AND BASES

• Recall: strong acids and strong bases completely ionize in water

□ [H+] and [OH-] are _____ to concentration of _____ acid and base, respectively.

$$0.25 \text{ M HCI} \longrightarrow \text{H}^+ + \text{CI}^- \qquad [\text{H}^+] = ___ \text{M}$$

$$1.2 \text{ M Ca(OH)}_2 \longrightarrow \text{Ca}^{2+} + 2 \text{ OH}^- \quad [\text{OH}^-] = 1.2 \text{ M x} __ = ___$$

• Recall: strong bases may contain the following ions.

```
lons of Strong Bases: OH<sup>-</sup>, H<sup>-</sup>, NH<sub>2</sub><sup>-</sup>, O<sup>2-</sup>

Calculation of pH or pOH: [____] = [H<sup>-</sup>], [NH<sub>2</sub><sup>-</sup>], [O<sup>2-</sup>]
```

EXAMPLE: If the concentration of Ba(H)₂ solution is 0.398 M, calculate its pOH.

PRACTICE: An aqueous solution of HBrO₄ has a pH of 4.34. Find the molar concentration of HBrO₄ solution.

PRACTICE: Calculate the pH of a 25 mL of 5.45 x 10⁻² M LiOH solution.

PRACTICE: HI is a strong acid ($K_a = 3.2 \times 10^9$). Calculate [H⁺], [OH⁻], pH and pOH of a 7.1 x 10⁻² M HI solution.