CONCEPT: CLAUSIUS-CLAPEYRON EQUATION

Clausius-Clapeyron Equation establishes a relationship between ______ of liquids and ______.
 Recall: vapor pressure represents an equilibrium between _____ and _____.
 As temperature _____, vapor pressure _____.

Linear Form of Clausius-Clapeyron Equation

- We use this form of the equation when a plot of _____ vs ____ temperature is given.
 - $\hfill \square$ Usually used to calculate the enthalpy of vaporization.
 - Recall a slope-intercept form of a straight line: y = mx + b

EXAMPLE: The vapor pressure of a substance is measured over a range of temperatures. A plot of the natural log of the vapor pressure vs the inverse of the temperatures (in Kelvin) produces a straight line with a slope of $-2.79 \times 10^3 \text{ K}$. Find the enthalpy of vaporization of the substance.

PRACTICE: Vapor pressure measurements at various temperature values are given below. Determine the molar heat of vaporization for cyclohexane.

T(°C) 0.0 20.0 40.00 60.0

P (mmHq)

28

78

186

389

- a) 11,520 J/mol
- b) 72,193 J/mol
- c) 33,147 J/mol
- d) 52,968 J/mol

CONCEPT: CLAUSIUS-CLAPEYRON EQUATION

Two-Point Form of Clausius-Clapeyron Equation

- We use this form of the equation when _____ temperatures and/or _____ pressures are mentioned.
 - □ When given *Normal boiling point*, Pressure = _____ torr or mmHg.

EXAMPLE: The enthalpy of vaporization of water is 40.3 kJ/mol at its normal boiling point at 100°C. What is the vapor pressure (mmHg) of water at 60°C?

a) 813.3 mmHg

b) 790.1 mmHg

c) 159.8 mmHg

d) 305.7 mmHg

PRACTICE: Benzene has a heat of vaporization of 30.72 kJ/mol and a normal boiling point of 80.1°C. At what temperature does benzene boil when the external pressure is 405 torr?

a) 251.9 K

b) 720.7 K

c) 924.2 K

d) 333.2 K