CONCEPT: BOND ANGLES

- The angle between two bonds that begins from the same element within a molecule.
 - □ When the central element has ____ lone pair(s) it possesses an *ideal bond angle*.
 - □ **Ideal Bond Angle:** The _____ angle elements take in order to minimize repulsion between one another.
 - When the central element has ____ or more lone pairs its ideal bond angle will be decreased.

EXAMPLE: If the H–C–H angle within the CH₄ molecule is 109.5°, what is the H–N–H bond angle within NH₃?

- a) 120°
- b) 109.5°

c) 107.3°

d) 180°

• Bond angles can further differentiate molecules that possess the same number of electron groups.

Bond Angles				
Electron Groups	Ideal Bond Angle	1 Lone Pair	2 Lone Pairs	3 Lone Pairs
2	180°			
3	120°			
4	109.5°			
5	120°			
6	900			

EXAMPLE: Determine the F–I–F bond angle for the following ion: IF_4 ⁻.

CONCEPT: BOND ANGLES

PRACTICE: Determine the bond angle for the thiocyanate ion, SCN-.

- a) 180°
- b) 90°
- c) 120°
- d) 109.5°

PRACTICE: In the PCl_3F_2 molecule the chlorine atoms exist on the equatorial positions and the fluorine atoms exist in the axial positions. Based on this information, predict the Cl-P-Cl bond angle.

- a) 90°
- b) 180°
- c) 109.5°
- d) 120°

PRACTICE: Determine the O–N–O bond angle for N₂O₄, which exists as O₂N–NO₂.

- a) 120°
- b) 109.5°
- c) 180°
- d) 90°