
CONCEPT: ELECTROLYTIC CELL

Intro to Electrolytic Cells

● A cell that utilize <i>electrolysis</i> in order to operate. Example: or car batteries								
□ Electrolysis: Chemical Reactions that consume external energy in order to occur.								
□ No matter the cell, the cathode is the site of and the anode is the site of								
EXAMPLE: In a galvanic cell, the acceptance of an electron occurs at the and in an electrolytic cell it occurs at the								
a) cathode, cathode	b) anode, anode	c) anode, cathode	d) cathode, anode					

Electrolytic Cell Components

- Electrolytic cells use the same major components as galvanic cells, but still possess some key differences.
 - □ **Key Difference 1:** An electrolytic cell ______ electricity and requires a battery to drive the reaction forward.
 - □ **Key Difference 2:** Uses stored _____ energy and converts it into _____ energy.
 - □ **Key Difference 3:** Since the process is nonspontaneous, the cathode is _____ and the anode is _____.

EXAMPLE: Which of the following is true about an electrolytic cell?

- a) Has a positive cathode
- b) Has no salt bridge
- c) Cathode plates out d) Has a negative anode

CONCEPT: ELECTROLYTIC CELL

Spontaneity

- An Electrolytic Cell uses _____ redox reactions to consume electricity.
 - \Box All nonspontaneous redox reactions have a _____ ΔE^{o}_{cell} value.

Spontaneity	∆G°	∆S° _{tot}	Keq	K vs Q	E°cell
<u>Nonspontaneous</u>	Δ G ° 0	ΔS° _{tot} 0	K 1	K_Q	E°cell 0

EXAMPLE: If the standard cell potential E°_{cell} for the given redox reaction is -0.54 V, which of the following statements is true? z

$$Zn^{2+}$$
 (ag) + Ni (s) \longrightarrow Zn (s) + Ni²⁺ (ag)

- a) The redox reaction will have an equilibrium constant value that is greater than 1.
- b) The redox reaction will produce electricity.
- c) The redox reaction will have an equilibrium constant value that is less than 1.
- d) The reaction quotient will be less than the equilibrium constant.

PRACTICE: If the overall redox reaction for an electrolytic cell is given below, what will happen to the mass of the cobalt electrode?

$$Co^{2+}$$
 (aq) + Cu (s) — Co (s) + Cu²⁺ (aq)

- a) Its mass will increase.
- b) Its mass will decrease.
- c) Its mass will remain constant.
- d) Not enough information is given.