
CONCEPT: FORMATION EQUATIONS

The Natural State (Standard State)

• The elements of the Periodic Table exist in different standard states in the natural world.

□ At room temperature (____ °C) and standard pressure (____ atm), elements exist as **solids**, **liquids** or **gases**.

EXAMPLE: Which of the following elements is found in its standard state?

a) I₂ (g)

b) O₃ (g)

c) Ne (g)

d) B₂ (g)

Identifying Formation Equations

• In a Formation Equation the standard states of elements combine together to form _____ mole(s) of product.

EXAMPLE: Write the formation equation for methanethiol, CH₃SH.

STEP 1: Write the compound as a product.

□ In a formation equation, the product will always have a coefficient of _____.

STEP 2: Write the standard states of the elements that make up the compound as the reactants.

STEP 3: Balance the formation equation with the appropriate coefficients for the reactants.

□ A formation equation is a rare instance where a coefficient doesn't need to be a whole number.

CONCEPT: FORMATION EQUATIONS

PRACTICE: Which of the following represents the formation equation for barium nitrate, Ba(NO₃)₂?

a)
$$\underline{1}$$
 Ba²⁺ (aq) + $\underline{2}$ NO₃⁻ (aq) \longrightarrow $\underline{1}$ Ba(NO₃)₂ (aq)

b)
$$\underline{1}$$
 Ba(NO₃)₂ (aq) \longrightarrow $\underline{1}$ Ba (s) + $\underline{1}$ N₂ (g) + $\underline{3}$ O₂ (g)

c)
$$\underline{1}$$
 Ba (s) + $\underline{1}$ N₂ (g) + $\underline{3}$ O₂ (g) \longrightarrow $\underline{1}$ Ba(NO₃)₂ (aq)

d)
$$\underline{1}$$
 Ba (s) + $\underline{2}$ N (g) + $\underline{6}$ O (g) \longrightarrow $\underline{1}$ Ba(NO₃)₂ (aq)

PRACTICE: Identify a substance that is **not** in its standard state.

PRACTICE: Ibuprofen is used as an anti-inflammatory agent used to deal with pain and bring down fevers. If it has a molecular formula of C₁₃H₁₈O₂, determine the balanced chemical equation that would give you directly the enthalpy of formation for ibuprofen.