

CONCEPT: ENTHALPY OF FORMATION

- At this point we have identified three ways to determine the enthalpy or heat of reaction, ΔH_{Rxn} .
 - **Constant Volume Calorimetry:** Uses a bomb calorimeter to find ΔH_{Rxn} of _____ reactions.
 - **Thermochemical Equation:** Uses _____ and a _____ equation to determine the ΔH_{Rxn} .
 - **Hess's Law:** Uses the enthalpies of _____ reactions to find ΔH_{Rxn} for the overall reaction.
- If the first 3 ways are unavailable, then we can use the standard enthalpy of formation for substances to find ΔH_{Rxn} .
 - Recall, that an element in its standard state is given an enthalpy of formation of _____.

Standard Heat of Reaction

Standard Heat of Reaction Formula

$$\Delta H_{\text{Rxn}}^{\circ} = [S \mathbf{n} \Delta H_f^{\circ} (\text{_____})] - [S \mathbf{n} \Delta H_f^{\circ} (\text{_____})]$$

□ $\Delta H_{\text{Rxn}}^{\circ}$ = Standard enthalpy or heat of _____ in kJ.

□ S = sigma or "sum up".

□ \mathbf{n} = _____ of substance.

□ ΔH_f° = Standard enthalpy or heat of _____ in $\frac{\text{kJ}}{\text{mol}}$.

EXAMPLE: The reaction of methane with chlorine gas is illustrated by the reaction below:

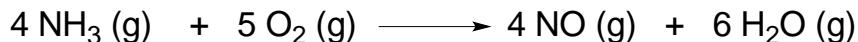
Calculate the $\Delta H_{\text{Rxn}}^{\circ}$ if the standard enthalpies of formation for CH_4 , CCl_4 , and HCl are -74.87 kJ/mol , -139 kJ/mol and -92.31 kJ/mol respectively.

STEP 0: **CHECK** to see if the chemical equation is balanced and if not then do the necessary steps to balance it.

STEP 1: Starting with the products, multiple the **coefficients** of each substance with their enthalpy of formation value.

$$\text{Products} = \left[\left(\text{_____ mol CCl}_4 \times \text{_____ } \frac{\text{kJ}}{\text{mol}} \right) + \left(\text{_____ mol HCl} \times \text{_____ } \frac{\text{kJ}}{\text{mol}} \right) \right] =$$

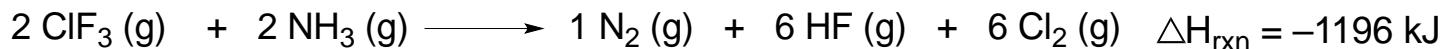
STEP 2: Go to the reactants, also multiple the **coefficients** of each substance with their enthalpy of formation value.


$$\text{Reactants} = \left[\left(\text{_____ mol CH}_4 \times \text{_____ } \frac{\text{kJ}}{\text{mol}} \right) + \left(\text{_____ mol Cl}_2 \times \text{_____ } \frac{\text{kJ}}{\text{mol}} \right) \right] =$$

STEP 3: Take both totals and place them into the standard heat of reaction formula to determine $\Delta H_{\text{Rxn}}^{\circ}$.

$$\Delta H_{\text{Rxn}}^{\circ} = \text{Products} - \text{Reactants} = \left[\text{_____} \right] - \left[\text{_____} \right] =$$

CONCEPT: ENTHALPY OF FORMATION


PRACTICE: The oxidation of ammonia is illustrated by the following equation:

Calculate the enthalpy of reaction, ΔH_{rxn} , based on the given standard heats of formation.

Standard Heats of Formation	
Substances	ΔH_f° kJ/mol
$\text{NH}_3 \text{ (g)}$	– 45.9
$\text{O}_2 \text{ (g)}$	0.0
NO (g)	90.3
$\text{H}_2\text{O (g)}$	– 241.8
$\text{H}_2\text{O (l)}$	– 285.8

PRACTICE: Consider the following equation:

Determine the standard enthalpy of formation for chlorine trifluoride, ClF_3 .

Standard Heats of Formation	
Substances	ΔH_f° kJ/mol
$\text{NH}_3 \text{ (g)}$	– 45.9
$\text{N}_2 \text{ (g)}$	0.0
HF (g)	– 273
$\text{Cl}_2 \text{ (g)}$	0.0