CONCEPT: STANDARD TEMPERATURE AND PRESSURE

- Standard Temperature and Pressure (STP) is a commonly used term in calculations involving gases.
 - □ At STP, the temperature is measured as _____ °C or ____ K and the pressure is _____.
 - □ Under IUPAC Rules STP , the pressure is now _____.

EXAMPLE: A sample of oxygen gas has a measured volume of 325 mL at STP. How many grams are present?

STP and Volume

• Standard Molar Volume represents the volume of one mole of an ideal gas at STP.

Standard Molar Volume
$$V = \frac{nRT}{P} = \frac{(1 \text{ mole})^{\left(0.08206 \frac{L \cdot atm}{mol \cdot K}\right)}(\underline{\qquad} K)}{\left(\underline{\qquad} atm\right)} = \underline{\qquad}$$

□ This relationship between moles and volume gives us the conversion factor of:

EXAMPLE: How many moles of chlorine gas occupy a volume of 15.7 L at STP?

	CONCEPT: STANDA	ARD TEMPERAT	TURE AND F	PRESSURE
--	-----------------	--------------	------------	----------

PRACTICE: A sample of dichloromethane gas (CH_2Cl_2) occupies 32.6 L at 310 K and 5.30 atm. Determine its volume at STP?

PRACTICE: Which gas sample has the greatest volume at STP?

a) 10.0 g He

b) 10.0 g Ne

- c) 10.0 g N₂
- d) All have the same volume

PRACTICE: Nitrogen and hydrogen combine to form ammonia via the following reaction:

$$1 N_2 (s) + 3 H_2 (g)$$
 \longrightarrow $2 NH_3 (g)$

What mass of nitrogen is required to completely react with 800.0 mL H₂ at STP?