
- Equilibrium constant (K) specifies the favored \_\_\_\_\_\_ of a reaction while rate constant (k) deals with \_\_\_\_\_.
  - □ **K**: concentration units; **k**: concentration and time units (M•time-1)

#### **Equilibrium Constant Expressions**

- Equilibrium Constant (K or Keq) is a \_\_\_\_\_ of product to reactant concentrations at equilibrium.
  - □ Equilibrium Constant is temperature \_\_\_\_\_: change in temperature changes the \_\_\_\_\_ of K.



- □ Solids and pure liquids are \_\_\_\_\_ from K expressions
  - adding a solid (s) or pure liquid (l) does \_\_\_\_\_ change their concentrations

$$Mg(OH)_2$$
 (s) + 2 HCl (aq)  $\longrightarrow$  2 H<sub>2</sub>O (l) +  $MgCl_2$  (aq)

$$K = \frac{[products]}{[reactants]} = ----$$

**EXAMPLE**: What is the equilibrium constant expression for the following reaction:

$$2 \text{ HgO (s)} + \text{H}_2\text{O (l)} + 2 \text{ Cl}_2(g) \longrightarrow 2 \text{ HOCl (aq)} + \text{HgO (s)} + \text{HgCl}_2(s)$$

**PRACTICE:** Provide K expression for the reverse of the following reaction:

$$Fe_2O_3(s) + 3 H_2(g) \longrightarrow 2 Fe(s) + 3 H_2O(g)$$

a) 
$$\mathbf{K} = \frac{[\text{Fe}]^2 [\text{H}_2\text{O}]^3}{[\text{Fe}_2\text{O}_3] [\text{H}_2]^3}$$

c) 
$$\mathbf{K} = \frac{[\text{Fe}_2\text{O}_3] [\text{H}_2]^3}{[\text{Fe}]^2 [\text{H}_2\text{O}]^3}$$

b) 
$$\mathbf{K} = \frac{[H_2O]^3}{[H_2]^3}$$

d) 
$$\mathbf{K} = \frac{[H_2]^3}{[H_2O]^3}$$

## **Magnitude of Equilibrium Constant**

• Magnitude of **K** indicates how far \_\_\_\_\_ or \_\_\_\_ a reaction lies at equilibrium, at a given temperature.

| Magnitude of Equilibrium Constant |           |                       |                          |
|-----------------------------------|-----------|-----------------------|--------------------------|
| K > 1:                            | and       | reaction are favored. | $K = \frac{10}{2} = 5$   |
| K < 1:                            | and       | reaction are favored. | $K = \frac{2}{10} = 0.2$ |
| K = 1:                            | direction | direction is favored. |                          |

□ Magnitude of K can also be determined from rate constants of forward and reverse reactions.

$$K = \frac{k_{forward}}{k_{reverse}} \begin{vmatrix} x = Equilibrium Constant \\ k = Rate Constant \end{vmatrix}$$

**EXAMPLE:** When this reaction comes to an equilibrium, which will be higher in pressure, reactants or products?

$$2 \text{ CH}_4 (g) + 2 \text{ H}_2 \text{S} (g) \longrightarrow \text{CS}_2 (g) + 4 \text{ H}_2 (g)$$
 Kp =  $1.3 \times 10^3$ 

- a) reactants
- b) products

- c) neither
- d) impossible to estimate

PRACTICE: Which of the reactions is likely to produce more O<sub>2</sub> at equilibrium at 25°C?

- a) 2 NO (g)  $\longrightarrow$  N<sub>2</sub> (g) + O<sub>2</sub> (g) Keq = 2.4 x 10<sup>30</sup>
- b)  $2 \text{ NO}_2 \text{ (g)} \longrightarrow 2 \text{ NO} + \text{O}_2 \text{ (g)}$  Keq =  $5.8 \times 10^{-5}$
- c)  $2 CO_2(g) \longrightarrow O_2(g) + 2 CO(g)$  Keq =  $3.1 \times 10^{-5}$
- d)  $2 H_2 O(g) \longrightarrow 2 H_2(g) + O_2(g)$  Keq = 5.1 x 10-82

**PRACTICE:** Consider the reaction A (g)  $\Longrightarrow$  B (g) + C (g), with  $k_{forward}$  of 5.7 x 10<sup>-2</sup> and  $k_{reverse}$  of 3.8 x 10<sup>-4</sup>.

Which would be greater at equilibrium, partial pressure of A or partial pressures of B and C?

a) partial pressure of A

b) partial pressure of B & C

c) partial pressures will be equal