CONCEPT: MOLE CONCEPT

			_
The	NΛ	_	_
ıne	IVI	O	ю

	<u> </u>	r of units as atoms in 12.00 g	g of Carbon-12" and connects together:
	ngle element with no charge. le element with or	charno	
_		-	
	A compound with 2 or more	_	
□ Formula U	Init: General term for a compound	composed of a(n)	and
EXAMPLE: Which of	of the following compounds would	not be associated with the te	erm "formula unit"?
a) Na ₂ CO ₃	b) CH₃COONa	c) BF ₃	d) MnCl ₄
Converting between	Moles and Particles		
Avogadro's Numb	per: One mole of a substance is ed	qual to	_ particles.
□ Particles:	A general term that is used for ion	is, atoms, molecules or formເ	ula units.
□ 1 mole of c	chlorine, Cl ₂ , equals 6.022 x 10 ²³ n	nolecules Cl2	
c. c	111011110, 012, 0406.0 01022 A 10	1101000100 01 <u>2</u> .	
EVAMBLE: How me	are realise of ablaring ago are ther	0 22 v 1037 malagulag2	
	any moles of chlorine gas are ther		
a) 7.23 x 10 ⁻¹⁵ mol	b) 5.02 x 10 ⁶¹ mol	c) 1.38 x 10 ¹⁴ mol	d) 6.65 x 10 ⁷ mol
Converting between	Mass and Moles		
_	stance is equal to the molar mass	of that substance.	
	chlorine, Cl ₂ , weighs 70.90 grams.		
	- , <u>-</u> , u		
EYAMDI E: How ma	any grams of chlorine gas are ther	ro in 2.31 moles?	
a) 82.85 g	b) 165.91 g	c) 0.066 g	d) 0.033 g
a) 02.00 g	b) 100.01 g	0, 0.000 g	u) 0.000 g

CONCEPT: MOLE CONCEPT

Converting between Mass and Particles

• As we've stated earlier, the unit of mole serves as a bridge that connects together the other units.

EXAMPLE: How many grams of Cl₂ contain 9.25 x 10²⁴ molecules of Cl₂?

PRACTICE: If a sample of sodium chloride, NaCl, contains 73.1 kg, what is its number of formula units?

PRACTICE: Calculate the number of oxygen atoms found in 783.9 g NiCl₂ • 6 H₂O.

CONCEPT: MOLE CONCEPT
PRACTICE: If the density of water is 1.00 g/mL at 25°C, calculate the number of water molecules found in 1.50 x 10^3 µL of
water.
PRACTICE: A cylindrical copper wire is used for the fences around a house. The copper wire has a diameter of 0.0750 in.
How many copper atoms are found in 5.160 cm piece? The density of copper is 8.96 g/cm ³ . (V = $\pi \cdot r^2 \cdot h$)
PRACTICE: The density of the sun is 1.41 g/cm³ and its volume is 1.41 x 10 ²⁷ m³. How many hydrogen molecules are in
the sun if we assume all the mass is hydrogen gas?