CONCEPT: LEWIS DOT STRUCTURES: SIGMA AND PI BONDS

- Recall, a single covalent bond involves the sharing of ____ valence electrons between elements.
 - □ **Sigma Bond** (_____ bond): The strongest form of a covalent bond that directly connects elements together.
 - □ **Pi Bond** (_____ bond): The weaker form of a covalent bond that insulates and protects the sigma bond.
 - □ As the number of pi bonds ____ between elements the bond strength ____ and the bond length ____.

Sigma & Pi Bonds		
Single Bond	Double Bond	Triple Bond
A single bond has s bond and p bond.	A double bond has s bond and p bond.	A triple bond has s bond and p bond.
cc	CC	c <u></u> c

EXAMPLE: Which of the following statements best describes the relationship between bond length and bond strength for a series of compounds involving bonds between the same two atoms?

- a) The greater the bond strength, the longer the bond.
- b) The greater the bond strength, the shorter the bond.
- c) Bond length and bond strength are not related.
- d) The relationship between bond length and bond strength depends on other factors.

PRACTICE: How many pi bonds does the following molecule contain?

CONCEPT: LEWIS DOT STRUCTURES: SIGMA AND PI BONDS

PRACTICE: How many sigma bonds does the following molecule contain?

PRACTICE: Which has greater bond strength between the carbon–carbon bond.

 C_2Cl_2 vs. C_2Cl_6

PRACTICE: Draw the total number of sigma and pi bonds of the sulfur trioxide molecule, SO₃.