CONCEPT: INTEGRATED RATE LAW

• Integrated Rate Law describes the relationship between [reactants] and _____.

□ Helps determine how long it takes for X amount of moles per L of reactant to be _____

 $\hfill\Box$ Integrated rate law depends on the _____ of the reaction

Zero-Order Integrated Rate Law

• For reactions following zero order rate law, we use the following equation:

EXAMPLE: A plot of [NO₃] vs time with a slope of 0.260 gives a straight line. What was the initial concentration of NO₃ if after 35 seconds its concentration dropped to $2.75 \times 10^{-2} \,\mathrm{M}$?

CONCEPT: INTEGRATED RATE LAW

First-Order Integrated Rate Law

• For reactions with first order, we use the following equation:

EXAMPLE: A certain reaction has a rate constant of 0.289 s⁻¹. How long (seconds) would it take for the concentration of reactant A to decrease from 1.43 M to 0.850 M?

Second-Order Integrated Rate Law

• For reactions with second order, we use the following equation:

EXAMPLE: The reactant concentration for a second-order reaction was 0.670 M after 300 s and 7.3 x 10⁻² M after 750 s. What is the rate constant k for this reaction?

CONCEPT: INTEGRATED RATE LAV	INTEGRATED RATE LAV
------------------------------	---------------------

PRACTICE: For the reaction A ——— B, the rate constant is 0.0837 M⁻¹•sec⁻¹. How long would it take for [A] to decrease by 85%?

PRACTICE: The following reaction has a rate constant of 3.7 x 10⁻³ M•s⁻¹ at 25°C:

Calculate the concentration of C after 2.7 x 10^{-3} sec where [A]₀ was 0.750 M at 25°C; assume [C]₀ = 0 M.

PRACTICE: For the decomposition of urea, NH_2CONH_2 (aq) + H^+ (aq) + $2H_2O$ (I) \longrightarrow $2NH_4^+$ (aq) + HCO_3^- (aq), the rate constant is $3.24 \times 10^{-4} \, \text{s}^{-1}$ at $35^{\circ}C$. The initial concentration of urea is $2.89 \, \text{mol/L}$. What fraction of urea has decomposed after $3.5 \, \text{minutes}$?

PRACTICE: lodine-123 is used to study thyroid gland function. As this radioactive isotope breaks down, after 5.7 hrs the concentration of iodine-123 is 56.3% complete. Find the rate constant of this reaction.