CONCEPT: PERIODIC TREND: EFFECTIVE NUCLEAR CHARGE

• Within an atom, an electron experiences attraction by the nucleus and repulsion by surrounding electrons.

- □ Effective Nuclear Charge (Z_{Eff}): Measurement of attractive force between protons and electrons.
 - ____ Z_{Eff} = ____ attractive force = electrons pulled closer to the nucleus.
- □ Shielding Constant (S): Measurement of repulsive force between valence electrons and inner core electrons.
 - ____ S = ____ repulsive force = valence electrons pushed further away from the nucleus.

Periodic Trends

- The attractive force between electrons and the nucleus is influenced by shell number and quantity electrons.
 - □ ____ shell number = ___ distance between electron and nucleus = ___ attractive force.
 - $\ \square$ quantity of electrons in the same shell or subshell = $\ _$ attractive force.
 - □ Periodic Trend: Effective nuclear charge _____ moving from left to right across a period and going up a group.

EXAMPLE: Which of the following represents a chalcogen with the greatest effective nuclear charge?

a) Cl

b) Li

c) S

d) Te

e) Ne

CONCEPT: PERIODIC TREND: EFFECTIVE NUCLEAR CHARGE

Calculate without Slater's Rules

• We take a simple approach to calculate the effective nuclear charge of a valence electron when only given the _____.

EXAMPLE: What is the effective nuclear charge felt by an electron in the third shell of an aluminum atom?

- **STEP 1:** Find the element and its atomic number on the periodic table.
- **STEP 2:** Write its condensed electron configuration and determine its number of inner core electrons.
- **STEP 3:** Use the atomic number and the shielding constant, **S**, to determine the effective nuclear charge.

PRACTICE: What is the identity of an element when the effective nuclear charge of its valence electrons is 18 while its shielding constant is 5?

a) P

b) Ar

c) N

d) V

e) Al

CONCEPT: PERIODIC TREND: EFFECTIVE NUCLEAR CHARGE

Calculate with Slater's Rules

• Slater's Rules: System used to determine the effective nuclear charge of a specific electron within an orbital.

EXAMPLE: Using Slater's Rules, calculate the effective nuclear charge of a 3p orbital electron in calcium.

STEP 1: Group electrons in an electron configuration in order of increasing *n* value and in this form:

[1s] [2s,2p] [3s,3p] [3d] [4s,4p] [4d] [4f] [5s,5p] [5d]....

STEP 2: Identify an electron within the selected electron group.

- □ Use lower electron groups to the left to determine the calculated shielding constant, S_{Cal}.
- □ Ignore higher electron groups to the right (they don't shield).

STEP 3: Use the calculated shielding constant, S_{Cal}, of the electron to determine the effective nuclear charge.

CONCEPT: PERIODIC TREND: EFFECTIVE NUCLEAR CHARGE				
PRACTICE: In which orbital does an electron in a sulfur atom experience the greatest shielding?				
a) 2p	b) 2s	c) 3p	d) 3s	e) 1s
PRACTICE: Rank the	following elements by effo	ective nuclear charge, Z _{Ef}	f, for a valence electron: h	Kr, Se, Ca, K, Ge
	,	0 / -	.,	, , , ,
DDACTICE: Using Sig	ater's Rules calculate the e	offoctivo pueloar chargo o	of the 4d erbital electron in	iodino
FIRETIOE. Using Sig	alei a i vuies calculate tile t	shedhve hudiear dharge o	i tile 40 Olbital election III	i iouilie.