## **CONCEPT:** BALANCING CHEMICAL EQUATIONS

- When balancing always make sure the \_\_\_\_\_ and \_\_\_\_ of atoms on both sides of the arrow are equal.
  - □ In a balanced equation the **numbers** are referred to as \_\_\_\_\_\_

**2** 
$$H_2(g)$$
 + **1**  $O_2(g)$   $\longrightarrow$  **2**  $H_2O(g)$ 

**EXAMPLE**: Write the balanced equation for the following by inserting the correct coefficients in the blanks:

$$\_\_C_4H_{10}(g) + \_\_O_2(g) \longrightarrow \_\_H_2O(I) + \_\_CO_2(g)$$

STEP 1: Set up a list for the elements that are Reactants and another list for the elements that are Products.

- STEP 2: Start from the top and going down both lists determine how many of each element is present.
- **STEP 3:** Start from the top and going down both lists begin balancing each element to ensure they match.
  - □ Sometimes you may have a decimal or a fraction as a coefficient and so must multiply the equation by \_\_\_\_\_.

## **CONCEPT: BALANCING CHEMICAL EQUATIONS**

PRACTICE: Write the balanced equation for the following by inserting the correct coefficients in the blanks.

$$AI_4C_3$$
 (s) +  $I_2O$  (l)  $\longrightarrow$   $AI_2O_3$  (s) +  $I_2O$  (g)

**PRACTICE:** Determine the total sum of the coefficients after balancing the following equation.

$$\_\_C_2H_5SH(g) + \_\_O_2(g) \longrightarrow \_\_CO_2(g) + \_\_H_2O(l) + \_\_SO_2(g)$$

PRACTICE: Determine the balanced chemical equation when ethanol, C<sub>2</sub>H<sub>6</sub>O is ignited in the presence of air.

a) 
$$C_2H_6O$$
 + 4  $H_2O$   $\longrightarrow$  5  $CO_2$  + 7  $CO$ 

b) 
$$C_2H_6O$$
 + 2  $O_3$   $\longrightarrow$  2  $CO_2$  + 3  $H_2O$ 

d) 
$$C_2H_6O$$
 + 3  $O_2$   $\longrightarrow$  5  $CO_2$  + 4  $H_2O$