CONCEPT: BALANCING CHEMICAL EQUATIONS - When balancing always make sure the _____ and ____ of atoms on both sides of the arrow are equal. - □ In a balanced equation the **numbers** are referred to as ______ **2** $$H_2(g)$$ + **1** $O_2(g)$ \longrightarrow **2** $H_2O(g)$ **EXAMPLE**: Write the balanced equation for the following by inserting the correct coefficients in the blanks: $$__C_4H_{10}(g) + __O_2(g) \longrightarrow __H_2O(I) + __CO_2(g)$$ STEP 1: Set up a list for the elements that are Reactants and another list for the elements that are Products. - STEP 2: Start from the top and going down both lists determine how many of each element is present. - **STEP 3:** Start from the top and going down both lists begin balancing each element to ensure they match. - □ Sometimes you may have a decimal or a fraction as a coefficient and so must multiply the equation by _____. ## **CONCEPT: BALANCING CHEMICAL EQUATIONS** PRACTICE: Write the balanced equation for the following by inserting the correct coefficients in the blanks. $$AI_4C_3$$ (s) + I_2O (l) \longrightarrow AI_2O_3 (s) + I_2O (g) **PRACTICE:** Determine the total sum of the coefficients after balancing the following equation. $$__C_2H_5SH(g) + __O_2(g) \longrightarrow __CO_2(g) + __H_2O(l) + __SO_2(g)$$ PRACTICE: Determine the balanced chemical equation when ethanol, C₂H₆O is ignited in the presence of air. a) $$C_2H_6O$$ + 4 H_2O \longrightarrow 5 CO_2 + 7 CO b) $$C_2H_6O$$ + 2 O_3 \longrightarrow 2 CO_2 + 3 H_2O d) $$C_2H_6O$$ + 3 O_2 \longrightarrow 5 CO_2 + 4 H_2O