CONCEPT: COMPLEX IONS: FORMATON CONSTANT

- A **complex ion** is a structure containing a metal cation that acts as a Lewis _____ and covalently bonded to a *ligand*.
 - □ **Ligand:** a molecule or ion that acts as a Lewis _____ and donates a lone pair to the metal cation.

Formation Constant

- The Formation Constant (____) is a _____ of product to reactant concentrations that deals with complex ions.
 - □ Like other equilibrium constants it can be calculated by setting up an expression and ignoring ____ and ____.

EXAMPLE: The formation of the complex ion created from the combining of silver ion and cyanide ion is given below:

$$Ag^+ (aq) + 2 CN^- (aq) \rightleftharpoons Ag(CN)_2^- (aq)$$
 $K_f = 1.0 \times 10^{21}$

If 100.0 mL of 0.0120 M AgCIO₄ is mixed with 220.0 mL of 0.25 M CN⁻, what is the [Ag⁺] once equilibrium has been reached?

STEP 1: Setup an ICE Chart with the given _____ equation.

ICE Chart (Complex Ion)	
Ag ⁺ (aq) + CN ⁻ (aq) → Ag(CN) ₂ ⁻ (aq) C E	
STEP 2: Determine the of the metal cation and the liq	
STEP 3: Using the INITIAL ROW, place the initial concentrations of	of the metal cation and ligand anion.
STEP 4: Using the CHANGE ROW, looking at the reactants subtra	act from their initial amounts by the mole amount.
$\hfill\Box$ Using the Law of Conservation of Mass, whatever you le	ose as a reactant you that amount to products.
STEP 4: Using the EQUILIBRIUM ROW, setup the equilibrium cor	nstant expression and solve for

□ The amount of the metal cation in reality will not reach __ so set it to the x variable.

CONCEPT: COMPLEX IONS: FORMATON CONSTANT
PRACTICE: If your equilibrium constant K is equal to the product of K_{sp} and K_f , find the solubility of AgCl in 2.0 M NH ₃ . K_{sp} of AgCl = 1.77 x 10 ⁻¹⁰ ; K_f of Ag(NH ₃) ₂ ⁺ = 1.7 x 10 ⁷ .
PRACTICE: A solution is composed of $3.20 \times 10^{-4} \text{ M Co(NO}_3)_3$ mixed with 0.200 M NH_3 . Determine the [Co³+] that remains once the solution reaches equilibrium in the formation of Co(NH ₃) ₆ ³+.