CONCEPT: AUTO-IONIZATION

• Auto-Ionization occurs when _____ molecules react with one another in an aqueous solution.

Base

□ Recall: water is amphoteric
$$H_2O(I) + H_2O(I) = H_3O^+(aq) + OH^-(aq)$$

Acid

• **Kw**: ionization of water:

Pure water: [H₃O⁺] [OH⁻]

□ As temperature _____, Kw ____

Kw & Temperature	
T (°C)	Kw
0	1.14 x 10 ⁻¹⁵
10	2.93 x 10 ⁻¹⁵
20	6.81 x 10 ⁻¹⁵
30	1.471 x 10 ⁻¹⁴
50	5.476 x 10 ⁻¹⁴
100	51.3 x 10 ⁻¹⁴

EXAMPLE: A particular aqueous solution at 50°C contains 3.7 x 10⁻⁴ M of hydronium ions. Calculate the [OH-] and identify solution as acidic, basic, or neutral.

PRACTICE: Chemistry student prepared an aqueous solution at 30°C. If the solutions contains 7.42 x 10⁻⁹ M of hydroxide ions, calculate the pH.

PRACTICE: Calculate the K_w of pure water given the pH = 6.34.