Some elements can have or octet electrons around themselves and maintain stability.
one demand and have or or or
□ Recall, their non-octet number of electrons is their group number.
□ Incomplete Octet : Group 2A = and Group 3A =
□ Expanded Octet : Group 5A =, Group 6A =, Group 7A =, Group 8A =
- This is true for elements that are in Periods and lower.
EXAMPLE: Draw the Lewis Dot Structure for xenon dibromide molecule, XeBr ₂ .
PRACTICE: Determine the Lewis Dot Structure for the following compound: SOCI ₂
<u>Radicals</u>
Radicals ● Free Radicals are molecules or ions with a(n) electron around an element.
Free Radicals are molecules or ions with a(n) electron around an element.
■ Free Radicals are molecules or ions with a(n) electron around an element. □ Radicals compounds always have a(n) number of total valence electrons.

CONCEPT: LEWIS DOT STRUCTURES: EXCEPTIONS PRACTICE: Draw the Lewis Dot Structure for the radical hydroxide, OH.	
PRACTICE: Draw the Lewis Dot Structure for POCl ₃ .	
PRACTICE: Metalloids can sometimes adopt the bonding preferences of similar nonmetals. Based on your knowled expanded octets, draw the Lewis Dot Structure for the following ion, SiF_6^{2-} .	edge of