CONCEPT: QUANTUM NUMBERS: NUMBER OF ELECTRONS

Number of Electrons in Shells

- Each shell for a given atom has a maximum number of electrons it can hold.
 - \Box When only the shell number (*n*) is given: Number of electrons =

EXAMPLE: How many electrons can be found in the 7th shell of an atom?

a) 14

b) 28

c) 49

d) 98

e) 112

Number of Electrons in Subshells & Orbitals

• When more than just the quantum number *n* is included we follow the **Quantum Electrons Roadmap**.

EXAMPLE: Determine the number of electrons that can be found in the 7th shell and d sublevel.

- **STEP 1:** Determine the value for *I* from either a given *n* value or from a subshell letter.
- STEP 2: If m_I is not given, use the I value to determine the number of orbitals.
- STEP 3: Based on the number of orbitals, find the number of electrons.

CONCEPT: QUANTUM NUMBERS: NUMBER OF ELECTRONS

PRACTICE: Determine the number of electrons that can have the following set of quantum numbers: n = 3, $m_l = 0$.

PRACTICE: Determine the number of electrons that can have the following set of quantum numbers: n = 2, $m_s = -1/2$.

PRACTICE: Determine the number of electrons that can have the following set of quantum numbers.

$$n = 4, I = 3, m_L = -1$$

PRACTICE: Determine the number of electrons that can have the following set of quantum numbers.

$$n = 4$$
, $m_L = -1$, $m_s = -1/2$