CONCEPT: GIBBS FREE ENERGY CALCULATIONS

- Gibbs Free Energy formula allows us to calculate the value of _____ (kJ) by using ΔH°, ΔS° and T (K) values.
 - \square Note: $\triangle G^{\circ}$ is under standard conditions while $\triangle G$ is under nonstandard conditions.

Gibbs Free Energy Formula

 $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$

• ΔG° , ΔH° , ΔS° = at standard conditions (1 atm, 25°C)

EXAMPLE: For a particular reaction, $\Delta H^{\circ} = -111.4 \text{ kJ}$ and $\Delta S^{\circ} = -25.0 \text{ J/K}$.

Calculate ΔG° for this reaction at 298° K. What can be said about the spontaneity of the reaction at this temperature?

- a) The system is at equilibrium
- b) The system is spontaneous in the reverse direction.
- c) The system is spontaneous as written.

Temperature Conditions

- ullet ΔG° formula can be used to approximate _____ at which reactions are spontaneous or nonspontaneous.
 - \square When $\triangle G^{\circ}$ value is unknown

EXAMPLE: For the reaction, $N_2(g) + 3 H_2(g) = 2 NH_3(g)$, $\Delta H^\circ = -92.4 kJ$, and $\Delta S^\circ = -198 J/K$. Is the reaction spontaneous under standard conditions? If not at which temperature will it be spontaneous?

Predicting Spontaneity

-∆S

Always

LOW Temperatures

+∆S

HIGH Temperatures

spontaneous

+∆H

-∆H

STEP 1: Using the Gibbs Free Energy formula, set ΔG° equal to _____.

 \Box Plug in given values for ΔH° and ΔS° , and solve for _____.

- Found temperature corresponds to equilibrium.

STEP 2: Predict spontaneity using _____ of ΔH° and ΔS° .

- □ If spontaneous at high temp, reaction will be spontaneous _____ calculated temp.
- □ If spontaneous at low temp, reaction will be spontaneous _____ calculated temp.

CONCEPT: GIBBS FREE ENERGY CALCULATIONS

PRACTICE: Calculate ΔG° for the following reaction: P_4 (s) + 5 O_2 (g) \longrightarrow P_4O_{10} (s), ΔH° = - 2940 kJ/mol, 25°C.

Does the reaction favor reactants or products?

Substance	S° (J/mol•K)
P ₄ (s)	164.4
O ₂ (g)	205.2
P ₄ O ₁₀ (g)	228.9

PRACTICE: Determine if reaction is spontaneous under standard conditions, if not at what temperature will it be spontaneous? 3 A (g) + 5 B (s) \longrightarrow 3 AB (s) + B₂ (g) \triangle H° = 112.7 kJ, \triangle S° = 78.3 J/K.

PRACTICE: Nickel has ΔH_{vap} = 370.4 kJ/mol and ΔS_{vap} = 123.3 J/mol•K. Will nickel boil at 2700°C and 1 atm?

CONCEPT: GIBBS FREE ENERGY CALCULATIONS

Gibbs Free Energy of Reaction

- Similar to ΔS° of reaction formula, ΔG° of reaction can be calculated with free energy of ______.
 - □ These values will always be provided
 - □ Elements in natural state have a Gibbs Free energy of formation equal to _____.

Gibbs Free Energy of Reaction Formula $\Delta G^o_{rxn} = [\sum_{n} G_f^o (\underline{}) - \sum_{n} G_f^o (\underline{})]$ • $\Delta G^o_{rxn} = Standard Free Energy of reaction in _____ • <math>\sum_{n} = Standard Free Energy of reaction in _____ • <math>\sum_{n} = Standard Free Energy of Formation in _____ • <math>\sum_{n} = Standard Free Energy of Formation in _____$

EXAMPLE: Determine ΔG°_{rxn} for the reaction: $HNO_3(g) + NH_3(g) \longrightarrow NH_4NO_3(s)$.

G° _f (kJ/mol)
- 73.5
- 16.4
-183.8

PRACTICE: Fe₂O₃ (s) + 3 H₂ (g) \longrightarrow 2 Fe (s) + 3 H₂O (g) is a redox reaction. What would be its Gibbs Free energy

change under standard conditions? Is the reaction spontaneous at 25°C?

Substance	G° _f (kJ/mol)
Fe ₂ O ₃ (s)	- 742.2
$H_2(g)$	0
Fe (s)	0
$H_2O(g)$	- 228.6