## **CONCEPT: CELL NOTATION**

- Cell notation (cell diagram) is a quicker method to describe the overall redox reaction in an electrochemical cell.
  - □ Phase Boundary ( \_\_\_\_ ): The condition where two phases of the \_\_\_\_\_ substance can coexist at equilibrium.
  - □ Physical Boundary ( \_\_\_\_ ): The physical space that separates the \_\_\_\_\_ and the \_\_\_\_\_.



**EXAMPLE:** Consider an electrochemical cell where the following reaction takes place:

$$3 \text{ Sn}^{2+} (aq) + 2 \text{ Al (s)} \longrightarrow 3 \text{ Sn (s)} + 2 \text{ Al}^{3+} (aq)$$

What is the cell notation for this cell?

**PRACTICE:** Write the half reactions as well as the overall net ionic equation for the following line notation:

Fe (s) | Fe
$$^{2+}$$
 (aq) || Mg $^{2+}$  (aq) | Mg (s)

## **CONCEPT: CELL NOTATION**

**PRACTICE:** The cell notation for a redox reaction is given as the following at (T= 298 K). Calculate the cell potential for the reaction at 25°C.

$$Zn(s) \mid Zn^{2+} (aq, 0.37 \text{ M}) \mid \mid Ni^{2+} (aq, 0.059 \text{ M}) \mid Ni(s)$$

## **Standard Reduction Potentials**

$$Zn^{2+}$$
 (aq) + 2 e -  $\longrightarrow$  Zn (s)  $E^{\circ}_{red}$  = -0.7621

$$Ni^{2+}$$
 (aq) + 2 e - Ni (s)  $E^{\circ}_{red}$  = - 0.2300

**PRACTICE:** What is the [Cu<sup>2+</sup>] for the following cell notation diagram if the cell potential is 0.4404 V?

Cu | Cu
$$^{2+}$$
 (aq, ? M) || Ag $^{+}$ (aq, 0.50 M) | Ag

## **Standard Reduction Potentials**

$$E^{\circ}_{red} = + 0.3394$$

$$Ag^+(aq) + e^- \longrightarrow Ag(s)$$

$$E^{\circ}_{red} = + 0.8000$$