CONCEPT: STANDARD REDUCTION POTENTIALS • Standard Reduction Potential (E°_{red}) is a tendency of a species to gain _____ from another species. □ Recall: Reduction is _____ of electrons, while oxidation is _____ of electrons. □ E°_{red} values are measured at standard conditions: 25°C, 1 atm, ____ M solution and pH = ____. - _____ E°_{red}, more likely _____ will occur. ___ Strength of Oxidizing Agent | ndard Reduction Potentials | | |---|--| | lalf-Reaction E ^o red (V) | Reduction Half-Reaction | | → 2 F- (aq) 2.87 | $F_2(g) + 2e^- \rightarrow 2 F^-(aq)$ | | \rightarrow 2 Cl ⁻ (aq) 1.36 | Cl_2 (aq) + $e^- \rightarrow 2 Cl^-$ (aq) | | $+ 4e^{-} \rightarrow 2 \text{ H}_2\text{O (I)}$ 1.23 | $O_2(g) + 4 H^+(aq) + 4e^- \rightarrow 2 H_2O(l)$ | | → 2 Br ⁻ (aq) 1.09 | $Br_2(I) + 2e^- \rightarrow 2 Br^-(aq)$ | | \rightarrow Fe ²⁺ (aq) 0.77 | Fe^{3+} (aq) + $e^{-} \rightarrow Fe^{2+}$ (aq) | | $2e^{-} \rightarrow H_2(g)$ | 2 H ⁺ (aq) + 2e ⁻ → H ₂ (g) | | $2e^{-} \rightarrow Pb(s)$ -0.13 | Pb^{2+} (aq) + $2e^{-} \rightarrow Pb$ (s) | | 2e ⁻ → Ni (s) -0.23 | $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ | | $2e^{-} \rightarrow Zn (s)$ -0.76 | Zn^{2+} (aq) + 2e ⁻ \rightarrow Zn (s) | | Be ⁻ → Al (s) -1.66 | Al^{3+} (aq) + 3e ⁻ \rightarrow Al (s) | | $2e^{-} \rightarrow Mg(s)$ -2.37 | Mg^{2+} (aq) + $2e^{-} \rightarrow Mg$ (s) | | e ⁻ → Li (s) -3.04 | Li ⁺ (aq) + $e^- \rightarrow Li$ (s) | | | Br ₂ (I) + 2e ⁻ \rightarrow 2 Br (aq)
Fe ³⁺ (aq) + e ⁻ \rightarrow Fe ²⁺ (aq)
2 H⁺ (aq) + 2e⁻ \rightarrow H ₂ (g)
Pb ²⁺ (aq) + 2e ⁻ \rightarrow Pb (s)
Ni ²⁺ (aq) + 2e ⁻ \rightarrow Ni (s)
Zn ²⁺ (aq) + 2e ⁻ \rightarrow Zn (s)
Al ³⁺ (aq) + 3e ⁻ \rightarrow Al (s)
Mg ²⁺ (aq) + 2e ⁻ \rightarrow Mg (s) | ___ Strength of Reducing Agent **EXAMPLE**: Determine which of the following will least likely donate an electron? a) H₂ b) Br₂ c) Zn²⁺ d) Cl₂ e) Li+ PRACTICE: Rank the given metal ions in order of increasing strength as an oxidizing agent. $Pb^{2+} \ (-0.13 \ V), \ Mn^{2+} \ (-1.18 \ V), \ Cu^{2+} \ (+0.16 \ V), \ Co^{3+} \ (+1.82 \ V), \ Fe^{3+} \ (+0.77 \ V)$ PRACTICE: Determine which species can oxidize Br₂. a) Fe³⁺ b) Ni²⁺ c) H+ d) F₂