CONCEPT: STANDARD REDUCTION POTENTIALS

• Standard Reduction Potential (E°_{red}) is a tendency of a species to gain _____ from another species.

□ Recall: Reduction is _____ of electrons, while oxidation is _____ of electrons.

□ E°_{red} values are measured at standard conditions: 25°C, 1 atm, ____ M solution and pH = ____.

- _____ E°_{red}, more likely _____ will occur.

___ Strength of Oxidizing Agent

ndard Reduction Potentials	
lalf-Reaction E ^o red (V)	Reduction Half-Reaction
→ 2 F- (aq) 2.87	$F_2(g) + 2e^- \rightarrow 2 F^-(aq)$
\rightarrow 2 Cl ⁻ (aq) 1.36	Cl_2 (aq) + $e^- \rightarrow 2 Cl^-$ (aq)
$+ 4e^{-} \rightarrow 2 \text{ H}_2\text{O (I)}$ 1.23	$O_2(g) + 4 H^+(aq) + 4e^- \rightarrow 2 H_2O(l)$
→ 2 Br ⁻ (aq) 1.09	$Br_2(I) + 2e^- \rightarrow 2 Br^-(aq)$
\rightarrow Fe ²⁺ (aq) 0.77	Fe^{3+} (aq) + $e^{-} \rightarrow Fe^{2+}$ (aq)
$2e^{-} \rightarrow H_2(g)$	2 H ⁺ (aq) + 2e ⁻ → H ₂ (g)
$2e^{-} \rightarrow Pb(s)$ -0.13	Pb^{2+} (aq) + $2e^{-} \rightarrow Pb$ (s)
2e ⁻ → Ni (s) -0.23	$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$
$2e^{-} \rightarrow Zn (s)$ -0.76	Zn^{2+} (aq) + 2e ⁻ \rightarrow Zn (s)
Be ⁻ → Al (s) -1.66	Al^{3+} (aq) + 3e ⁻ \rightarrow Al (s)
$2e^{-} \rightarrow Mg(s)$ -2.37	Mg^{2+} (aq) + $2e^{-} \rightarrow Mg$ (s)
e ⁻ → Li (s) -3.04	Li ⁺ (aq) + $e^- \rightarrow Li$ (s)
	Br ₂ (I) + 2e ⁻ \rightarrow 2 Br (aq) Fe ³⁺ (aq) + e ⁻ \rightarrow Fe ²⁺ (aq) 2 H⁺ (aq) + 2e⁻ \rightarrow H ₂ (g) Pb ²⁺ (aq) + 2e ⁻ \rightarrow Pb (s) Ni ²⁺ (aq) + 2e ⁻ \rightarrow Ni (s) Zn ²⁺ (aq) + 2e ⁻ \rightarrow Zn (s) Al ³⁺ (aq) + 3e ⁻ \rightarrow Al (s) Mg ²⁺ (aq) + 2e ⁻ \rightarrow Mg (s)

___ Strength of Reducing Agent

EXAMPLE: Determine which of the following will least likely donate an electron?

a) H₂

b) Br₂

c) Zn²⁺

d) Cl₂

e) Li+

PRACTICE: Rank the given metal ions in order of increasing strength as an oxidizing agent.

 $Pb^{2+} \ (-0.13 \ V), \ Mn^{2+} \ (-1.18 \ V), \ Cu^{2+} \ (+0.16 \ V), \ Co^{3+} \ (+1.82 \ V), \ Fe^{3+} \ (+0.77 \ V)$

PRACTICE: Determine which species can oxidize Br₂.

a) Fe³⁺

b) Ni²⁺

c) H+

d) F₂