CONCEPT: BAND OF STABILITY: ALPHA DECAY & NUCLEAR FISSION

- Isotopes that lie outside the Band (Valley) of Stability are considered _____, ____ isotopes.
 - ☐ These isotopes will alter their number of _____ and/or ____ to move closer to the Band (Valley) of Stability.
 - ☐ They do this predominantly by alpha decay, nuclear fission, _____ decay, _____capture, or _____ emission.

Alpha Decay

- Alpha Decay happens for isotopes in the _____ corner of the N/Z plot.
 - $\hfill\Box$ These isotopes have an _____ of neutrons and protons.

EXAMPLE: Which daughter nuclide would reside in the band of stability created from the alpha decay of lead-212?

- a) Polonium-216
- b) Mercury-208
- c) Thallium-212
- d) Lead-209

CONCEPT: BAND OF STABILITY: ALPHA DECAY & NUCLEAR FISSION

Nuclear Fission

- Under Nuclear Fission a(n) ____ is shot at the nucleus of an isotope and ____ an extremely large amount of energy.
 - □ Additional Benefit: large heavy elements (greater than ____ amu) are split into 2 lighter daughter nuclides.
 - Drastically ____ the total number of nucleons for an isotope.

EXAMPLE: Nuclear fission is a commonly occurring process for uranium-235. Provide the identity of the missing daughter nuclide produced at the end of the reaction.

$$^{235}_{92}U + ^{1}_{0}n \longrightarrow ^{236}_{92}U \longrightarrow ^{A}_{Z}X + ^{141}_{56}Ba + 3 ^{1}_{0}n + ^{202.5 \text{ MeV}}$$

a) Cesium-77

b) Krypton-92

c) Bromine-81

d) Krypton-94

PRACTICE: Which of the following is a potential daughter nuclide created from the nuclear fission of uranium-233 that resides near the band of stability?

- a) Strontium-94
- b) Radon-222

- c) Curium-247
- d) Thorium-232