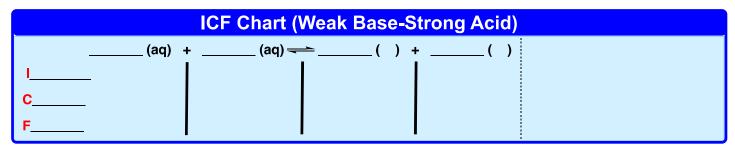
• This type of titration has the _____ as the titrate and the ____ as the titrant.

□ Recall, when a weak species reacts with a strong species use an ICF (I_____, C____, F____) Chart.


Before the Equivalence Point

• In this part of the titration the moles of weak base is _____ the moles of strong acid.

□ As the Strong Acid neutralizes the Weak Base, some ______ is formed.

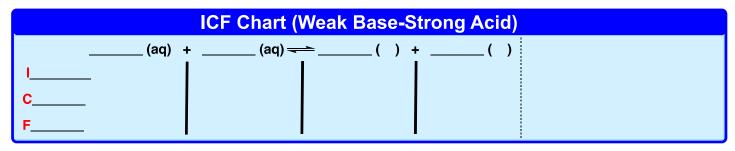
EXAMPLE: Calculate the pH of the solution resulting from the titration between 25.0 mL of a 0.100 M HClO₃ and 50.0 mL of a 0.100 M NH₃. (K_b of NH₃ is 1.75 x 10⁻⁵).

Use STEPS 1 to 3 to setup the ICF Chart.

STEP 4: The Henderson-Hasselbalch Equation is used for a _____ to find the pH of a solution.

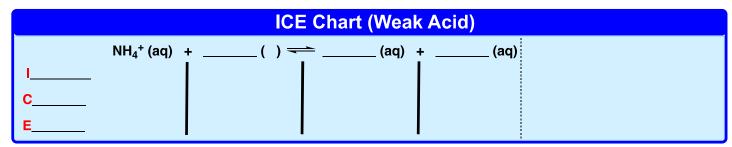
□ Using the FINAL ROW, use the moles of the _____ and ____ to find the pH.

Henderson-Hasselbalch Equation $pH = pKa + log \frac{[CB]}{[WA]}$

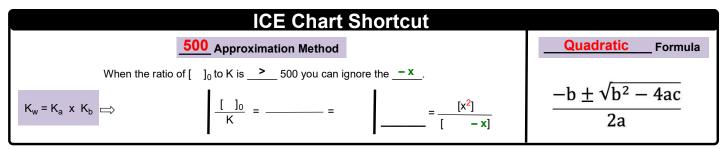

CONCEPT: TITRATIONS: WEAK BASE-STRONG ACID
PRACTICE: Calculate the pH of the solution resulting from the mixing of 75.0 mL of 0.100 M NaC ₂ H ₃ O ₂ and 75.0 mL of 0.30 M HC ₂ H ₃ O ₂ with 0.0040 moles of HBr.
PRACTICE: In order to create a buffer 7.321 g of potassium lactate is mix with 550.0 mL of 0.328 M lactic acid, $HC_3H_5O_3$. What is the pH of the buffer solution after the addition of 300.0 mL of 0.100 M hydrobromic acid, HBr? The Ka of $HC_3H_5O_3$ is 1.4 x 10 ⁻⁴ .

At the Equivalence Point

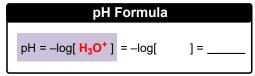
- In this part of the titration the moles of weak acid is _____ the moles of strong base.
 - ☐ The weak base and strong acid have been _____ and only the weak acid (conjugate acid) remains.


EXAMPLE: Calculate the pH of the solution resulting from the titration between 25.0 mL of a 0.100 M HClO $_3$ and 50.0 mL of a 0.050 M NH $_3$. (K_b of NH $_3$ is 1.75 x 10 $^{-5}$).

Use STEPS 1 to 3 to setup the ICF Chart.


- STEP 4: Using the FINAL ROW, determine the concentration of the weak acid (conjugate acid).
 - □ Divide its final _____ by the total volume used in the chemical reaction.

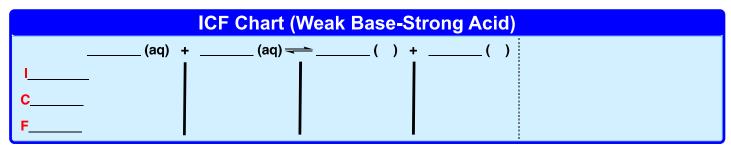
STEP 5: If all that is left is a weak species then set up an ICE Chart that has it reacting with ______



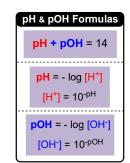
STEP 6: Using the EQUILIBRIUM ROW, setup the equilibrium constant expression with _____ and solve for ____.

□ Check if a shortcut can be utilized to avoid the _____ formula.

STEP 7: The _____ variable will equal [] and can be used to solve pH.


PRACTICE: Consider the titration of 100.0 mL of 0.100 M CH₃NH₂ with 0.250 M HNO₃ at the equivalence point. What would be the pH of the solution at the equivalence point? The K_b of CH₃NH₂ is 4.4 x 10⁻⁴.

After the Equivalence Point


- In this part of the titration the moles of weak base is _____ the moles of strong acid.
 - □ There will be _____ strong acid remaining after it has neutralized the weak base.

EXAMPLE: Calculate the pH of the solution resulting from the titration between 125.0 mL of a 0.100 M HClO₃ and 50.0 mL of a 0.050 M NH₃. (K_b of NH₃ is 1.75 x 10⁻⁵).

Use **STEPS 1 to 3** to setup the ICF Chart.

- STEP 4: Using the FINAL ROW, determine the concentration of the strong acid.
 - □ Divide its final _____ by the total volume used in the chemical reaction.
- **STEP 5:** Recall, the concentration of the strong acid will be equal to _____.

PRACTICE: A solution contains 100.0 mL of 0.550 M sodium nitrite, NaNO₂. Find the pH after the addition of 180.0 mL of 0.400 M HClO₄. The Ka of HNO₂ is 4.6 x 10⁻⁴.