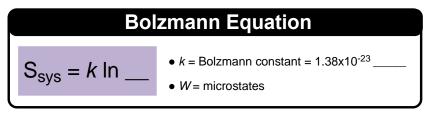

CONCEPT: THIRD LAW OF THERMODYNAMICS

- States that the _____ of a perfect crystal is ____ at absolute zero (____).
 - □ **Perfect crystal:** a solid with regular and ______ internal atomic arrangement.


□ **Microstates:** number of possible energetic ways to _____ components (atoms, molecules, ions) of a system.

EXAMPLE: All the statements are correct **except**:

- a) greater number of molecular motion, greater number of possible microstates
- b) a perfectly ordered system has more than 1 microstate
- c) any system at a temperature above 0 K has a positive ΔS
- d) perfect crystal exhibits no molecular motion

The Bolzmann Equation

• Austrian physicist Ludwig Bolzmann, related entropy (S) to number of _____ (W).

□ ____ microstates, ____ entropy; microstates = 1, entropy = <u>0</u>

EXAMPLE: Consider a system with a total of 3 x 10²⁶ number of microstates, what is the entropy of such a system?

PRACTICE: A brand new deck of cards which hasn't been shuffled yet, possesses only one arrangement. Another, older deck has been shuffled and possesses 8x10⁶⁷ arrangements. Calculate and compare entropies of each deck.