CONCEPT: QUANTUM NUMBERS: MAGNETIC QUANTUM NUMBER

• Recall,	an <mark>orbita</mark>	I is the re	egion within	a subshe	ll where two	specific e	electrons ca	n be found	l.		
	Orbital =	=		_()					
EXAMP a) 3f	L E: Provi		entity of a so	et of orbit	als that exis	at in the 4 th	principal le	evel and f s		5f	
	_			ni) = of orbitals (location of electrons). (-/ to +/) of the angular momentum quantum number /.							
Ц	Limitatio	on. It is t	ne	•	netic Q				number 1.		1
	Subshell	/ value	m _/ value	 	ictic Q		Set of Orbitals				
	S	0									
	р	1					p _y	p _z			
	d	2			d _{yz}	d _{xy}					
	f	3		f z ³ -3/5 zr ²	f _{x³-\frac{3}{5}xr²}	f y ³ - ³ / ₅ yr ²	f _{xyz}	f _{y(x²-z²)}	f _{x(z²-y²)}	f _{z(x²-y²)}	
			e a letter val				•			•	tant.
EXAMP	LE: Whic	h of the f	following is r	not a valid	I magnetic o	ıuantıım nı	ımber for t	ne 7f set of	orbitals?		
a) –1) – 2	not a valid magnetic quantum number for the 7f set o c) 0 d) +4				e) +3			

CONCEPT: QUANTUM NUMBERS: MAGNETIC QUANTUM NUMBER

PRACTICE: How many different values of m₁ are possible for a 4d set of orbitals?

a) 1

b) 3

c) 7

d) 5

e) 2

PRACTICE: Select a correct set of values for an electron found within the designated 5d orbital.

a)
$$n = 5$$
, $l = 2$, $m_l = 0$

b)
$$n = 5$$
, $l = 3$, $m_l = +1$

c)
$$n = 5$$
, $l = 3$, $m_l = 0$

d)
$$n = 5$$
, $l = 5$, $m_l = -2$

e)
$$n = 5$$
, $l = 2$, $m_l = +5$

PRACTICE: Which of the following statements is false?

- a) A set of *d* orbitals contains 5 orbitals.
- b) A set of 4s orbitals would have more energy than a set of 3p orbitals.
- c) The second shell of an atom possesses *d* orbitals.
- d) A set of f orbitals contains 3 orbitals.
- e) The first energy level contains only *s* orbitals.