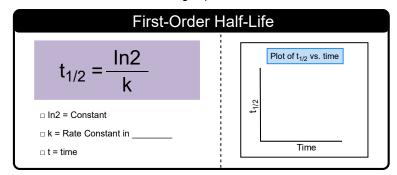

CONCEPT: HALF-LIFE

- Half-Life is the _____ it takes for ____ of a reactant to decay (decompose) in a certain time period.
 - □ Depends on the order of the reaction

Zero-Order Half-Life

• For reactions with zero order, we use the following equation:

□ Half-Life _____ on the initial concentration and gets _____ as concentration decreases.


EXAMPLE: The reverse Haber reaction: $2 \text{ NH}_4 \text{ (g)} \longrightarrow 3 \text{ H}_2 \text{ (g)} + \text{N}_2 \text{ (g)}$, has a rate constant of 1.45 x 10⁻⁶ M•s⁻¹ at 25°C. Calculate the half-life for the reaction where $[\text{NH}_4]_0 = 2.47 \times 10^{-2} \text{ mol/L}$.

PRACTICE: Decomposition of a certain substance Y at 45° C was found to be zero order. What is the half-life of substance Y if it took 15.5 minutes to decompose 67% of this substance? [Y]₀ = 0.25 M.

CONCEPT: HALF-LIFE

First-Order Half-Life

- Recall: All radioactive processes follow a 1st order rate law.
 - □ For reactions with first order, we use the following equation:

□ Half-Life does _____ depends on the initial concentration and is _____ throughout the whole reaction.

EXAMPLE: Rate constant for the following reaction was found to be 2.3 x 10⁻³ s⁻¹ at 35°C:

If the initial concentration of NO₂ was 1.4 x 10⁻¹, what is the half-life on this reaction?

PRACTICE: Radioactive plutonium-239 ($t_{1/2} = 2.41 \times 10^5 \text{ yr}$) is used in nuclear reactors and atomic bombs. If there are $5.70 \times 10^2 \text{ g}$ of plutonium isotope in a small atomic bomb, how long will it take for the substance to decay to $3.00 \times 10^2 \text{ g}$?

PRACTICE: Which of the following statements is **False**?

- a) The average rate of a reaction decreases during a reaction.
- b) The rate of zero order reactions are not dependent on concentrations.
- c) The rate of a first order reaction is dependent on concentrations.
- d) The half-life of a first order reaction is dependent on the initial concentration of reactant.

CONCEPT: HALF-LIFE

Second-Order Half-Life

• For reactions with second order, we use the following equation:

Second-Order Half-Life	
$t_{1/2} = \frac{1}{k[A]_0}$ $= [A]_0 = \text{Initial Reactant Concentration}$ $= k = \text{Rate Constant in}$ $= t = \text{time}$	Plot of t _{1/2} vs. time

□ Half-Life _____ on the initial concentration and gets _____ as concentration decreases.

EXAMPLE: The half-life of a certain reaction with 2^{nd} order was found to be 0.45 seconds. What was the initial concentration of a reactant if the slope of the straight line for this reaction is 3.5×10^{-3} ?

PRACTICE: Use the data below to determine the half-life of decomposition of NOCI reaction which follows 2nd order kinetics.

Time (s)	[NOCI] (M)
0	0.2563
200	0.2467
400	0.2425
600	0.2383
800	0.2347
1100	0.2314