CONCEPT: WEAK TITRATE-STRONG TITRANT CURVES

Under this type of titration between a weak titrate and a strong titrant a _____ region can exist.

EXAMPLE: Consider the titration of 55.0 mL of 0.120 M HCN with 0.160 M LiOH. Calculate the volume needed to reach the half equivalence point.

STEP 1: Determine the volume of the <u>titrant</u> to reach the equivalence point.

STEP 2: Utilize the correct formula based on the region of the titration curve.

□ Utilize this step only if necessary

PRACTICE: Consider the titration of 30.0 mL of 0.100 M HC₂H₃O₂ with 0.100 M NaNH₂. Which volume of NaNH₂ would take place within the buffer region?

- a) 30.0 mL
- b) 50.0 mL
- c) 10.0 mL
- d) 100.0 mL
- e) 1.5 L

CONCEPT: WEAK TITRATE-STRONG TITRANT CURVES

• In these 2 types of titration curves the pH changes gradually <u>before</u> the equivalence point (buffer region).

EXAMPLE: At the half equivalence point the [WA] = [CB]. Consider the titration of 100.0 mL of 0.200 M of a weak monoprotic acid with 50.0 mL of 0.200 M NaOH. Determine K_a value of the weak acid if the pH is 4.18.

PRACTICE: In titration of NH₃ and HCl, what is the predominant species beyond the equivalence point?

a) NH₃

b) HCl

c) CH₃NH₂

d) Cl⁻