CONCEPT: WEAK TITRATE-STRONG TITRANT CURVES Under this type of titration between a weak titrate and a strong titrant a _____ region can exist. **EXAMPLE:** Consider the titration of 55.0 mL of 0.120 M HCN with 0.160 M LiOH. Calculate the volume needed to reach the half equivalence point. **STEP 1:** Determine the volume of the <u>titrant</u> to reach the equivalence point. STEP 2: Utilize the correct formula based on the region of the titration curve. □ Utilize this step only if necessary **PRACTICE:** Consider the titration of 30.0 mL of 0.100 M HC₂H₃O₂ with 0.100 M NaNH₂. Which volume of NaNH₂ would take place within the buffer region? - a) 30.0 mL - b) 50.0 mL - c) 10.0 mL - d) 100.0 mL - e) 1.5 L ## **CONCEPT: WEAK TITRATE-STRONG TITRANT CURVES** • In these 2 types of titration curves the pH changes gradually <u>before</u> the equivalence point (buffer region). **EXAMPLE:** At the half equivalence point the [WA] = [CB]. Consider the titration of 100.0 mL of 0.200 M of a weak monoprotic acid with 50.0 mL of 0.200 M NaOH. Determine K_a value of the weak acid if the pH is 4.18. **PRACTICE:** In titration of NH₃ and HCl, what is the predominant species beyond the equivalence point? a) NH₃ b) HCl c) CH₃NH₂ d) Cl⁻