CONCEPT: MAGNETIC PROPERTIES OF COMPLEX IONS: OCTAHEDRAL COMPLEXES ## **Octahedral Complexes** | For octahedral complexes the type of ligand attached determines how electrons fill their d orbitals. | | | | | | |---|--------------------------|--------------------------------|--|--|--| | | field ligands attached = | Δ = High-spin complex = | | | | | | field ligands attached = | Δ = Low-spin complex. | | | | | EXAMPLE : Determine the spin and magnetism of the follow complex ion: [Co(NH ₃) ₆] ²⁺ . | | | | | | **Step 1:** Find the number of d electrons in the transition metal cation. Step 2: Identify the ligand as strong-field or weak-field. **Step 4:** Fill electrons in the split diagram and count the number of unpaired electrons. PRACTICE: Determine the spin and number of unpaired electrons in the following complex ion: [Mn(en)₃]³⁺. | CONCEPT: MAGNETIC PROI | PERTIES OF COMPLE | X IONS: OCTAHEDRAL COMPLEX | <u>ES</u> | |---|--|---|-------------------------| | | | ed electrons in the following comple | PRACTICE: Which of the follow | wing complex ions is/are | e diamagnetic in nature? | | | I. [Mn(Br ₄)] ^{2–} | II. [V(NO ₂) ₄] ⁴ – | III. [Zn(NH ₃) ₄] ²⁺ | IV. $[Sc(H_2O)_6]^{3+}$ |