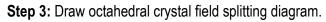
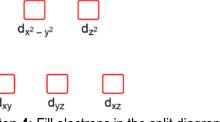

CONCEPT: MAGNETIC PROPERTIES OF COMPLEX IONS: OCTAHEDRAL COMPLEXES


Octahedral Complexes


 For octahedral complexes the type of ligand attached determines how electrons fill their d orbitals. 					
	field ligands attached =	Δ = High-spin complex =			
	field ligands attached =	Δ = Low-spin complex.			
EXAMPLE : Determine the spin and magnetism of the follow complex ion: [Co(NH ₃) ₆] ²⁺ .					

Step 1: Find the number of d electrons in the transition metal cation.

Step 2: Identify the ligand as strong-field or weak-field.

Step 4: Fill electrons in the split diagram and count the number of unpaired electrons.

PRACTICE: Determine the spin and number of unpaired electrons in the following complex ion: [Mn(en)₃]³⁺.

CONCEPT: MAGNETIC PROI	PERTIES OF COMPLE	X IONS: OCTAHEDRAL COMPLEX	<u>ES</u>
		ed electrons in the following comple	
PRACTICE: Which of the follow	wing complex ions is/are	e diamagnetic in nature?	
I. [Mn(Br ₄)] ^{2–}	II. [V(NO ₂) ₄] ⁴ –	III. [Zn(NH ₃) ₄] ²⁺	IV. $[Sc(H_2O)_6]^{3+}$