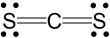
CONCEPT: ELECTRON GEOMETRY

• The simplest system for geometrical shapes that focuses on the number of _____ around the central element.


□ Treats lone pairs and surrounding elements as the _____.

Electron Geometry				
Electron Groups	Orbital Shapes		Electron Geometry	Memory Tool
2	⊙ =c=0			points in a straight
3	Ö: C F. C.F.	Sn Cl.		Tri =
4	H H H	HOH		Tetra =
5	: ;;: Br—;;:	Xe :Cl:		(3) +(2) =
6	:F:	:F: :F F: :C F: :F F:		Octopus: = 6.

EXAMPLE: Determine the electron geometry for the hydrogen sulfide molecule, H₂S.

 $\label{eq:practice:problem} \textbf{PRACTICE:} \ \ \text{Determine the electron geometry for the carbon disulfide molecule, } CS_2.$

a) Linear

b) Bent

c) Trigonal planar

d) Tetrahedral

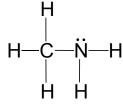
CONCEPT: ELECTRON GEOMETRY

• Recall, many possible Lewis Dot Structures exist, but there are rules to draw the best structure.

EXAMPLE: Determine the electron geometry for the following molecule: CH₂O.

PRACTICE: Determine the number of electron groups for the following cation: AsBr₂⁺.

a) 2


b) 3

c) 4

d) 1

PRACTICE: Draw and determine the electron geometry for the following molecule: TeBr₄

PRACTICE: Determine the electron geometry of the nitrogen atom within methylamine, CH₃NH₂.

- a) Linear
- b) Trigonal Pyramidal

- c) Tetrahedral
- d) Trigonal Planar