CONCEPT: USING HESS'S LAW TO DETERMINE K

- Recall Hess's Law: △H_{rxn} changes ______ to the coefficients of a reaction
 - □ However, relationship between K and the coefficients of a reaction is _____
 - There are ____ possible rearrangements (changes) of a chemical reaction

EXAMPLE: Given the reaction: $2 \text{ Cl}_2(g) + 2 \text{ H}_2\text{O}(g) \implies 4 \text{ HCl}(g) + \text{O}_2(g) \text{ Kp} = 7.5 \text{x} 10^{-2}$, calculate Kp of the reactions below.

a)
$$Cl_2(g) + H_2O(g) \longrightarrow 2 HCl(g) + \frac{1}{2}O_2(g)$$

b) 4 HCl (g) + O₂ (g)
$$\longrightarrow$$
 2 Cl₂ (g) + 2 H₂O (g)

CONCEPT: USING HESS'S LAW TO DETERMINE K

PRACTICE: Kc = 6.5×10^2 at a particular temperature for a reaction: $2 \text{ NO (g)} + 2 \text{ H}_2 \text{ (g)} \longrightarrow \text{N}_2 \text{ (g)} + 2 \text{ H}_2 \text{O (g)}$. Calculate

Kc at same temperature for the following reaction: $1/3 \text{ N}_2 \text{ (g)} + 2/3 \text{ H}_2 \text{ O (g)} = 2/3 \text{ NO (g)} + 2/3 \text{ H}_2 \text{ (g)}$.