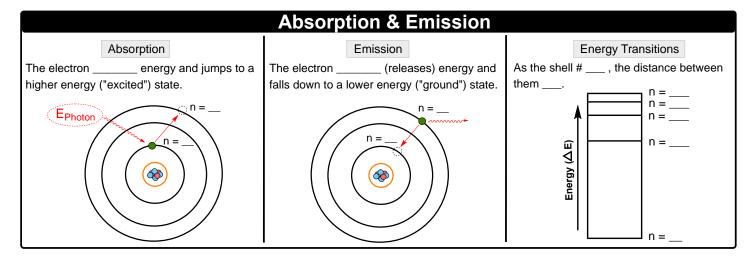

CONCEPT: BOHR MODEL


- In the **Bohr Model** of the atom, electrons travel around the nucleus in circular orbits called *shells*.
 - □ **Shell** (___): A grouping of electrons surrounding the nucleus that ties into their potential energy.
 - □ The Rydberg Constant = _____ when dealing with Joules.

EXAMPLE: Calculate the energy of an electron found in the second shell of the hydrogen atom.

Absorption and Emission

- Through either the absorption or emission of energy, electrons are able to move between different shells.
 - □ **Absorption**: When an electron moves from a _____ numbered shell to a _____ numbered shell.
 - □ **Emission**: When an electron moves from a _____ numbered shell to a _____ numbered shell.

□ As the distance traveled by an electron _____, the energy needed _____.

CONCEPT: BOHR MODEL

PRACTICE: Which of the electron transitions represents absorption with the greatest frequency?

- a) n = 5 to n = 3
- b) n = 1 to n = 3
- c) n = 2 to n = 4
- d) n = 6 to n = 7
- e) n = 4 to n = 5

PRACTICE: Which of the following transitions (in a hydrogen atom) represent emission of the shortest wavelength?

- a) n = 3 to n = 1
- b) n = 2 to n = 4
- c) n = 1 to n = 4
- d) n = 5 to n = 3
- e) n = 2 to n = 5

PRACTICE: If the energy of an electron within the boron atom was calculated as $-6.0556 \times 10^{-18} \text{ J}$, at what energy level would it reside?