
CONCEPT: INTRO TO ACID-BASE TITRATION CURVES

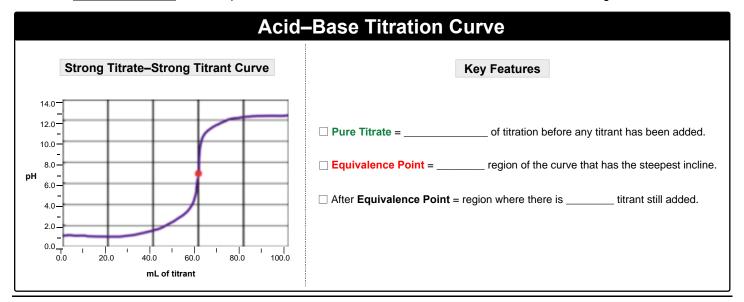
- An acid-base titration is a _____ reaction used in determining the concentration of an acid and base.
 - □ **Titrant**: A strong acid or base solution with a _____ concentration that is added to the titrate.
 - □ **Titrate**: An acidic or basic solution with an _____ concentration being neutralized by the titrant.
 - □ **Titration Curve**: A graph of the _____ of the titrate during the titration with a *titrant*.

The Equivalence Point

- The point of complete neutralization where the moles of acid _____ the moles of base.
 - □ The equivalence point volume equation represents a simplified approach to _____ stoichiometric calculations.

Equivalence Point Volume Formula	
	\square M _A = Molarity of the
$M_AV_A = M_BV_B$	\square V _A = Volume of the
	□ M _B = Molarity of the $□$ V _B = Volume of the

- For a diprotic and polyprotic acid the number of _____ will affect the overall concentration.


0.40 M H₂SO₄
$$\longrightarrow$$
 2 H⁺ + SO₄²⁻ [H⁺] = 0.40 M x _ = ____
0.10 M Ba(OH)₂ \longrightarrow Ba²⁺ + 2 OH⁻ [OH⁻] = 0.10 M x _ = ____

EXAMPLE: Consider the titration of 40.0 mL of 0.0550 M H₂CO₃ with 0.160 M Al(OH)₃. How many milliliters of 0.160 M Al(OH)₃ are required to reach the equivalence point?

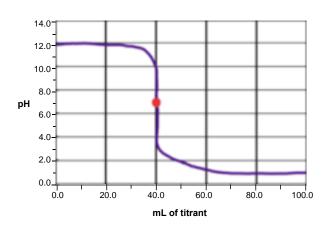
CONCEPT: INTRO TO ACID-BASE TITRATION CURVES

• The parts and overall _____ of the titration curve depends on the type of titrate and titrant used.

□ _____: The shape of the titration curve when both the titrate and titrant are strong.

EXAMPLE: Based on the image of the titration curve provided below, what is the potential identity of the titrate?

a) HNO₃


b) HF

c) KOH

d) HC₂H₃O₂

e) CH₃NH₃+

Strong Titrate-Strong Titrant Curve

PRACTICE: Consider the titration of 100.0 mL of 0.40 M HCl with 0.40 M NaOH. If sodium hydroxide is the titrant, which volume would place it in excess?

a) 70.0 mL

b) 25.0 mL

c) 100.0 mL

d) 110.0 mL

e) 9.0 mL