CONCEPT: CRYSTAL FIELD THEORY: TETRAHEDRAL COMPLEXES • Recall: In tetrahedral complexes, ligand-orbital interactions in-between the axes are the strongest. • Tetrahedral complexes have the _____ Δ. **EXAMPLE**: Which one of the following complexes will have the smallest energy gap between the e set and the t₂ set of orbitals? - a) [Co(NO₂)₆]³⁻ - b) $[Cr(ox)_3]^{4-}$ - c) [Cu(EDTA)]2- - d) $[CuBr_4]^{2-}$ **PRACTICE**: For which of the following complexes, the energies of the $d_x^2-y^2$ and d_z^2 orbitals will be lower than the other three d orbitals? - a) $[Co(en)_3]^{3+}$ - b) [Ni(CN)₄]²⁻ - c) $[Zn(H_2O)_4]^{2+}$ - d) [AuCl₂]-