CONCEPT: CRYSTAL FIELD THEORY: TETRAHEDRAL COMPLEXES

• Recall: In tetrahedral complexes, ligand-orbital interactions in-between the axes are the strongest.

• Tetrahedral complexes have the _____ Δ.

EXAMPLE: Which one of the following complexes will have the smallest energy gap between the e set and the t₂ set of orbitals?

- a) [Co(NO₂)₆]³⁻
- b) $[Cr(ox)_3]^{4-}$
- c) [Cu(EDTA)]2-
- d) $[CuBr_4]^{2-}$

PRACTICE: For which of the following complexes, the energies of the $d_x^2-y^2$ and d_z^2 orbitals will be lower than the other three d orbitals?

- a) $[Co(en)_3]^{3+}$
- b) [Ni(CN)₄]²⁻
- c) $[Zn(H_2O)_4]^{2+}$
- d) [AuCl₂]-