CONCEPT: THE pH SCALE - The **pH Scale** is used to classify _____ or ____ of aqueous solutions. - □ pH scale ranges from ___ to ___ under normal conditions (T = ____°C, up to ___ M solution). • Stronger the Acid: ____ the pH; Stronger the Base: ____ the pH. **EXAMPLE:** Given the [H+] of the following solutions, which one is the least acidic? - a) HNO₃: [H+] = 1.2 M - b) HCI: [H+] = 0.025 M - c) H_2SO_4 : [H+] = 0.27 M - d) HCIO₄: [H+] = 0.019 M - We can determine pH or pOH of solution if concentrations (M) of _____ and/or ____ are known, and vice versa. **EXAMPLE:** A solution is prepared by dissolving HCN in 2 L of water. The [H+] was found to equal to 0.34 moles. Calculate the pH of this HCN solution. **PRACTICE:** A solution of NaOH was prepared in a chemistry lab and the pOH was determined to be 9.3. What is the concentration of OH- ions of this basic solution? ## **CONCEPT:** THE pH SCALE ## Additional pH and pOH Calculations - Recall: the pH scale goes up to ____ at temperature of 25°C. - □ To calculate pH from pOH or vise versa, we use this formula: **EXAMPLE:** You prepare a solution of HCl with a pH of 2.3 at 25°C. What would be the pOH and the concentration of hydronium ions of this solution? **PRACTICE:** Calculate [OH-] of a lemon juice solution at 25°C with a [H+] = $5.7 \times 10^{-4} \,\mathrm{M}$. **PRACTICE:** A 345 mL bottle of antacid (Mg(OH)₂) contains 1.45×10^{-2} moles of hydroxide ions. Determine pH and pOH of the antacid. **PRACTICE**: Which of the following statement(s) on aqueous solutions is/are correct? - a) aqueous solutions have a pH of 7 - b) as concentration of hydronium ion increases, concentration of hydroxide ion decreases - c) solutions of weaker acids generally have a higher pOH then solutions of stronger acids - d) pH of pure water equals to 7 at 35° C.